Measurement of tissue oxygen extraction ratios from venous blood T2:: Increased precision and validation of principle

被引:103
作者
Golay, X
Silvennoinen, MJ
Zhou, JY
Clingman, CS
Kauppinen, RA
Pekar, JJ
van Zijl, PCM
机构
[1] Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
[3] Univ Kuopio, AI Virtanen Inst Mol Sci, FIN-70211 Kuopio, Finland
关键词
BOLD contrast; T-2; quantification; OER;
D O I
10.1002/mrm.1189
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
It has recently been shown that parenchymal oxygen extraction ratios (OERs) can be quantified using the absolute T-2 of venous blood draining from this tissue (Oja et al., J Cereb Blood Flow Metab 1999;19:1289-1295). Here, a modified Carr-Purcell-Meiboom-Gill (CPMG) multiecho experiment was used to increase the efficiency and precision of this approach and to test the applicability of the two-compartment exchange model for spinecho BOLD effects in pure venous blood. Relaxation measurements on bovine blood as a function of CPMG interecho spacing, oxygen saturation, and hematocrit provided the baseline relaxation and susceptibility shift parameters necessary to directly relate OER to T-2 of venous blood in vivo. Using an interecho spacing of 25 ms, the results on visual activation studies in eight volunteers showed T-2(CPMG) values increasing from 128 +/- 9 ms to 174 +/- 18 ms upon activation, corresponding to local DER values of 0.38 +/- 0.04 and 0.18 +/- 0.05 during baseline activity and visual stimulation, respectively. These OER values are in good agreement with literature data on venous oxygenation and numbers determined previously using a single-echo approach, while the measured T(2)s are about 20-40 ms longer. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:282 / 291
页数:10
相关论文
共 46 条
[1]   SPIN-ECHO NMR STUDIES OF CHEMICAL EXCHANGE .1. SOME GENERAL ASPECTS [J].
ALLERHAND, A ;
GUTOWSKY, HS .
JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (07) :2115-&
[2]   Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging [J].
An, HY ;
Lin, WL .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (08) :1225-1236
[3]   Diffusional water permeability of mammalian red blood cells [J].
Benga, G ;
Borza, T .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1995, 112 (04) :653-659
[4]   MAGNETIC-RESONANCE-IMAGING OF STATIONARY BLOOD - A REVIEW [J].
BROOKS, RA ;
DICHIRO, G .
MEDICAL PHYSICS, 1987, 14 (06) :903-913
[5]   MAGNETIC-RELAXATION IN BLOOD AND BLOOD-CLOTS [J].
BRYANT, RG ;
MARILL, K ;
BLACKMORE, C ;
FRANCIS, C .
MAGNETIC RESONANCE IN MEDICINE, 1990, 13 (01) :133-144
[6]   A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation [J].
Buxton, RB ;
Frank, LR .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (01) :64-72
[7]  
Chen W, 2000, MED RAD DIA IMG, P103
[8]   MR GRADIENT-ECHO IMAGING OF INTRAVASCULAR BLOOD OXYGENATION - T-2(ASTERISK) DETERMINATION IN THE PRESENCE OF FLOW [J].
CHIEN, D ;
LEVIN, DL ;
ANDERSON, CM .
MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (04) :540-545
[9]   EFFECTS OF HYPOXIA AND NORMOCARBIA ON CEREBRAL BLOOD FLOW AND METABOLISM IN CONSCIOUS MAN [J].
COHEN, PJ ;
ALEXANDER, SC ;
SMITH, TC ;
REIVICH, M ;
WOLLMAN, H .
JOURNAL OF APPLIED PHYSIOLOGY, 1967, 23 (02) :183-+
[10]   ABSOLUTE QUANTITATION OF WATER AND METABOLITES IN THE HUMAN BRAIN .1. COMPARTMENTS AND WATER [J].
ERNST, T ;
KREIS, R ;
ROSS, BD .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1993, 102 (01) :1-8