Quantitative analysis of the grain morphology in self-assembled hexagonal lattices

被引:62
作者
Hillebrand, Reinald [1 ]
Muller, Frank [1 ]
Schwirn, Kathrin [1 ]
Lee, Woo [1 ]
Steinhart, Martin [1 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
关键词
self-assembly; nanostructures; quantitative grain analysis; anodic aluminum oxide; image processing;
D O I
10.1021/nn700318v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a methodology for the analysis of the grain morphology of self-ordered hexagonal lattices and for the quantitative comparison of the quality of their grain ordering based on the distances between nearest neighbors and their angular order. Two approaches to grain identification and evaluation are introduced: (i) color coding the relative angular orientation of hexagons containing a central entity and its six nearest neighbors, and (ii) incorporating triangles comprising three nearest neighbors into grains or repelling them from grains based on deviations of the side lengths and the internal angles of the triangles from those of an ideal equilateral triangle. A spreading algorithm with tolerance parameters allows single grains to be identified, which can thus be ranked according to their size. Hence, grain size distributions are accessible. For the practical evaluation of micrographs displaying self-ordered structures, we suggest using the size of the largest identified grain as a quality measure. Quantitative analyses of grain morphologies are key to the systematic and rational optimization of the fabrication of self-assembled materials.
引用
收藏
页码:913 / 920
页数:8
相关论文
共 20 条
[1]   Phase behaviour and morphologies of block copolymers [J].
Abetz, V ;
Simon, PFW .
BLOCK COPOLYMERS I, 2005, 189 :125-212
[2]   BLOCK COPOLYMER THERMODYNAMICS - THEORY AND EXPERIMENT [J].
BATES, FS ;
FREDRICKSON, GH .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 (01) :525-557
[3]   Morphologies of block copolymer melts [J].
Castelletto, V ;
Hamley, IW .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (06) :426-438
[4]   Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization [J].
Chu, SZ ;
Wada, K ;
Inoue, S ;
Isogai, M ;
Yasumori, A .
ADVANCED MATERIALS, 2005, 17 (17) :2115-+
[5]   Preparation of porous materials with ordered hole structure [J].
Hoa, Marcus Liew Kai ;
Lu, Meihua ;
Zhang, Yong .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2006, 121 (1-3) :9-23
[6]   Fast fabrication of long-range ordered porous alumina membranes by hard anodization [J].
Lee, Woo ;
Ji, Ran ;
Goesele, Ulrich ;
Nielsch, Kornelius .
NATURE MATERIALS, 2006, 5 (09) :741-747
[7]   Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina [J].
Li, AP ;
Muller, F ;
Birner, A ;
Nielsch, K ;
Gosele, U .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) :6023-6026
[8]   On the growth of highly ordered pores in anodized aluminum oxide [J].
Li, FY ;
Zhang, L ;
Metzger, RM .
CHEMISTRY OF MATERIALS, 1998, 10 (09) :2470-2480
[9]   Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution [J].
Masuda, H ;
Hasegwa, F ;
Ono, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (05) :L127-L130
[10]   Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution [J].
Masuda, H ;
Yada, K ;
Osaka, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1998, 37 (11A) :L1340-L1342