A critical role for glycine transporters in hyperexcitability disorders

被引:23
作者
Harvey, Robert J. [1 ]
Carta, Eloisa [1 ]
Pearce, Brian R. [1 ]
Chung, Seo-Kyung [2 ]
Supplisson, Stephane [3 ]
Rees, Mark, I [2 ,4 ]
Harvey, Kirsten [1 ]
机构
[1] Sch Pharm, Dept Pharmacol, 29-39 Brunswick Sq, London WC1N 1AX, England
[2] Swansea Univ, Sch Med, Inst Life Sci, Swansea, W Glam, Wales
[3] Ecole Normale Super, Lab Neurobiol, CNRS, Paris, France
[4] Cardiff Univ, Sch Med, Inst Med Genet, Cardiff, Wales
来源
FRONTIERS IN MOLECULAR NEUROSCIENCE | 2008年 / 1卷
基金
英国医学研究理事会;
关键词
glycine transporters; GlyT1; GlyT2; VIAAT; hyperekplexia; startle disease; glycine encephalopathy;
D O I
10.3389/neuro.02.001.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle reflex, known as hyperekplexia (OMIM 149400). This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and nonsense mutations in the glycine receptor (GlyR) alpha 1 subunit gene (GLRA1) on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR beta subunit (GLRB) and the GlyR clustering proteins gephyrin (GPNH) and collybistin (ARHGEF9). Recent studies of the Na+/Cl--dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899). These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.
引用
收藏
页数:6
相关论文
共 51 条
[1]   Glycine encephalopathy (nonketotic hyperglycinemia): Comments and speculations [J].
Applegarth, DA ;
Toone, JR .
AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2006, 140A (02) :186-188
[2]  
Aubrey KR, 2007, J NEUROSCI, V27, P6273, DOI 10.1523/JNEUROSCI.1024-07.2007
[3]   Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses [J].
Berger, AJ ;
Dieudonné, S ;
Ascher, P .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (06) :3336-3340
[4]   Glycine transporters: essential regulators of synaptic transmission [J].
Betz, H ;
Gomeza, J ;
Armsen, W ;
Scholze, P ;
Eulenburg, V .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 :55-58
[5]   The SLC6 orphans are forming a family of amino acid transporters [J].
Bröer, S .
NEUROCHEMISTRY INTERNATIONAL, 2006, 48 (6-7) :559-567
[6]   A FRAMESHIFT MUTATION IN THE MOUSE ALPHA(1) GLYCINE RECEPTOR GENE (GLRA1) RESULTS IN PROGRESSIVE NEUROLOGICAL SYMPTOMS AND JUVENILE DEATH [J].
BUCKWALTER, MS ;
COOK, SA ;
DAVISSON, MT ;
WHITE, WF ;
CAMPER, SA .
HUMAN MOLECULAR GENETICS, 1994, 3 (11) :2025-2030
[7]  
Chaudhry FA, 1998, J NEUROSCI, V18, P9733
[8]   Genetic heterogeneity of the GLDC gene in 28 unrelated patients with glycine encephalopathy [J].
Conter, C ;
Rolland, MO ;
Cheillan, D ;
Bonnet, V ;
Maire, I ;
Froissart, R .
JOURNAL OF INHERITED METABOLIC DISEASE, 2006, 29 (01) :135-142
[9]   The scaffolding protein PSD-95 interacts with the glycine transporter GLYT1 and impairs its internalization [J].
Cubelos, B ;
González-González, IM ;
Giménez, C ;
Zafra, F .
JOURNAL OF NEUROCHEMISTRY, 2005, 95 (04) :1047-1058
[10]   Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain [J].
Cubelos, B ;
Giménez, C ;
Zafra, F .
CEREBRAL CORTEX, 2005, 15 (04) :448-459