Feedback control of Lyapunov exponents for discrete-time dynamical systems

被引:134
作者
Chen, GR [1 ]
Lai, DJ [1 ]
机构
[1] UNIV TEXAS, SCH PUBL HLTH, PROGRAM BIOMETRY, HOUSTON, TX 77030 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 07期
关键词
D O I
10.1142/S021812749600076X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A simple, yet mathematically rigorous feedback control design method is proposed in this paper, which can make all the Lyapunov exponents of the controlled system strictly positive, for any given n-dimensional dynamical system that could be originally nonchaotic or even asymptotically stable. The argument used is purely algebraic and the design procedure is completely schematic, with no approximations used throughout the derivation. This is a rigorous and convenient technique suggested as an attempt for anticontrol of chaotic dynamical systems, with explicit computational formulas derived for applications.
引用
收藏
页码:1341 / 1349
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1987, INTRO CHAOTIC DYNAMI
[2]  
CHEN G, 1995, CONTROL SYNCHRONIZAT
[3]  
CHEN GR, 1993, PROCEEDINGS OF THE 32ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P469, DOI 10.1109/CDC.1993.325103
[4]   FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS [J].
Chen, Guanrong ;
Dong, Xiaoning .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1363-1409
[5]  
HOLZFUSS J, 1991, LECT NOTES MATH, V1486, P263
[6]   EXPERIMENTAL MAINTENANCE OF CHAOS [J].
IN, V ;
MAHAN, SE ;
DITTO, WL ;
SPANO, ML .
PHYSICAL REVIEW LETTERS, 1995, 74 (22) :4420-4423
[7]  
JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
[8]   TAMING CHAOS .2. CONTROL [J].
OGORZALEK, MJ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1993, 40 (10) :700-706
[9]  
Oseledets V., 1968, Trans. Moscow Math. Soc, V19, P197
[10]  
RAO CR, 1973, LINEAR STATISTICAL I