Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles

被引:141
作者
Bharde, Atul A. [3 ]
Parikh, Rasesh Y. [1 ]
Baidakova, Maria [2 ]
Jouen, Samuel [4 ]
Hannoyer, Baetrice [4 ]
Enoki, Toshiaki [2 ]
Prasad, B. L. V. [3 ]
Shouche, Yogesh S.
Ogale, Satish [1 ,3 ]
Sastry, Murali [3 ]
机构
[1] Natl Ctr Cell Sci, Pune 411007, Maharashtra, India
[2] Tokyo Inst Technol, Dept Chem, Meguro Ku, Tokyo 1528551, Japan
[3] Natl Chem Lab, Mat Chem Div, Pune 411008, Maharashtra, India
[4] Univ Rouen, LASTSM, F-76801 Rouen, France
关键词
D O I
10.1021/la704019p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (gamma-Fe2O3) and greigite (Fe3S4) Under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end products can be tuned by the choice of precursors used.
引用
收藏
页码:5787 / 5794
页数:8
相关论文
共 41 条
[1]   Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J].
Banfield, JF ;
Welch, SA ;
Zhang, HZ ;
Ebert, TT ;
Penn, RL .
SCIENCE, 2000, 289 (5480) :751-754
[2]   Magnetosome formation in prokaryotes [J].
Bazylinski, DA ;
Frankel, RB .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) :217-230
[3]  
Bazylinski DA, 1997, REV MINERAL, V35, P181
[4]  
Berg J.M., 2006, BIOCHEMISTRY-US, P433
[5]   Extracellular biosynthesis of magnetite using fungi [J].
Bharde, A ;
Rautaray, D ;
Bansal, V ;
Ahmad, A ;
Sarkar, I ;
Yusuf, SM ;
Sanyal, M ;
Sastry, M .
SMALL, 2006, 2 (01) :135-141
[6]   Bacterial aerobic synthesis of nanocrystalline magnetite [J].
Bharde, A ;
Wani, A ;
Shouche, Y ;
Joy, PA ;
Prasad, BLV ;
Sastry, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) :9326-9327
[7]   MAGNETOTACTIC BACTERIA [J].
BLAKEMORE, R .
SCIENCE, 1975, 190 (4212) :377-379
[8]   Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro [J].
Cha, JN ;
Shimizu, K ;
Zhou, Y ;
Christiansen, SC ;
Chmelka, BF ;
Stucky, GD ;
Morse, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (02) :361-365
[9]   Magnetic properties of hydrothermally synthesized greigite (F3S4) -: II.: High- and low-temperature characteristics [J].
Dekkers, MJ ;
Passier, HF ;
Schoonen, MAA .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 141 (03) :809-819
[10]   Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species [J].
Faivre, Damien ;
Boettger, Lars H. ;
Matzanke, Berthold F. ;
Schueler, Dirk .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (44) :8495-8499