A fast branch & bound nearest neighbour classifier in metric spaces

被引:73
作者
Mico, L
Oncina, J
Carrasco, RC
机构
[1] Depto. Lenguajes Sist. Informaticos, Universidad de Alicante, E-03080 Alicante
关键词
metric spaces; nearest-neighbour; pattern recognition;
D O I
10.1016/0167-8655(96)00032-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recently introduced algorithm LAESA finds the nearest neighbour prototype in a metric space. The average number of distances computed in the algorithm does not depend on the number of prototypes but it shows linear space and time complexities. In this paper, a new algorithm (TLAESA) is proposed which has a sublinear time complexity and keeps the other features unchanged.
引用
收藏
页码:731 / 739
页数:9
相关论文
共 12 条
[1]  
Dasarathy B.V., 1991, Nearest Neighbour (NN) Norms: NN Pattern Classification Techniques., V17, P441
[2]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[3]  
Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
[4]   BRANCH AND BOUND ALGORITHM FOR COMPUTING K-NEAREST NEIGHBORS [J].
FUKUNAGA, K ;
NARENDRA, PM .
IEEE TRANSACTIONS ON COMPUTERS, 1975, C 24 (07) :750-753
[5]   A DATA STRUCTURE AND AN ALGORITHM FOR THE NEAREST POINT PROBLEM [J].
KALANTARI, I ;
MCDONALD, G .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1983, 9 (05) :631-634
[6]  
MICO L, 1996, THESIS U POLITECNICA
[7]   A NEW VERSION OF THE NEAREST-NEIGHBOR APPROXIMATING AND ELIMINATING SEARCH ALGORITHM (AESA) WITH LINEAR PREPROCESSING TIME AND MEMORY REQUIREMENTS [J].
MICO, ML ;
ONCINA, J ;
VIDAL, E .
PATTERN RECOGNITION LETTERS, 1994, 15 (01) :9-17
[8]  
RAMASUBRAMANIAN V, 1990, SIGNAL PROCESS, V5, P1323
[9]   NEW TECHNIQUES FOR BEST-MATCH RETRIEVAL [J].
SHASHA, D ;
WANG, TL .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1990, 8 (02) :140-158
[10]   NEW FORMULATION AND IMPROVEMENTS OF THE NEAREST-NEIGHBOR APPROXIMATING AND ELIMINATING SEARCH ALGORITHM (AESA) [J].
VIDAL, E .
PATTERN RECOGNITION LETTERS, 1994, 15 (01) :1-7