Hard disks on the hyperbolic plane

被引:31
作者
Modes, Carl D. [1 ]
Kamien, Randall D. [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
关键词
D O I
10.1103/PhysRevLett.99.235701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine a simple hard disk fluid with no long range interactions on the two-dimensional space of constant negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism by which global crystalline order is frustrated, allowing us to construct a tractable model of disordered monodisperse hard disks. We extend free-area theory and the virial expansion to this regime, deriving the equation of state for the system, and compare its predictions with simulation near an isostatic packing in the curved space.
引用
收藏
页数:4
相关论文
共 31 条
[1]  
Bowen L, 2003, DISCRETE COMPUT GEOM, V29, P23, DOI [10.1007/s00454-002-2791-7, 10.1007/s00454-002-0791-7]
[2]   Analytic calculation of B4 for hard spheres in even dimensions [J].
Clisby, N ;
McCoy, BM .
JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (5-6) :1343-1360
[3]  
CONWAY JH, 1988, SPHERE PACKINGS LATT, P36129
[4]  
COXETER HSM, 1998, NONEUCLIDEAN GEOMETR, P36129
[5]  
COXETER HSM, 1968, 12 GEOMETRIC ESSAYS, P36129
[6]   Three-dimensional periodic cubic membrane structure in the mitochondria of amoebae Chaos carolinensis [J].
Deng, YR ;
Mieczkowski, M .
PROTOPLASMA, 1998, 203 (1-2) :16-25
[7]   Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings [J].
Donev, A ;
Torquato, S ;
Stillinger, FH .
PHYSICAL REVIEW E, 2005, 71 (01)
[8]  
EDINBURG R, 1972, SOC T, V26, P1
[9]  
ESCHER MC, CIRCLE LIMIT, V3, P36129
[10]  
ESCHER MC, CIRCLE LIMIT, V4, P36129