High-frequency single-photon source with polarization control

被引:328
作者
Strauf, Stefan [1 ]
Stoltz, Nick G.
Rakher, Matthew T.
Coldren, Larry A.
Petroff, Pierre M.
Bouwmeester, Dirk
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, ECE Dept, Santa Barbara, CA 93106 USA
[5] Leiden Univ, Huygens Lab, NL-2300 RA Leiden, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphoton.2007.227
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optoelectronic devices that provide non-classical light states on demand have a broad range of applications in quantum information science(1), including quantum-key-distribution systems(2), quantum lithography(3) and quantum computing(4). Single-photon sources(5,6) in particular have been demonstrated to outperform key distribution based on attenuated classical laser pulses(7). Implementations based on individual molecules(8), nitrogen vacancy centres(9) or dopant atoms(10) are rather inefficient owing to low emission rates, rapid saturation and the lack of mature cavity technology. Promising single-photon-source designs combine high-quality microcavities(11) with quantum dots as active emitters(12). So far, the highest measured single-photon rates are similar to 200 kHz using etched micropillars(13,14). Here, we demonstrate a quantum-dot-based single-photon source with a measured single-photon emission rate of 4.0 MHz ( 31 MHz into the first lens, with an extraction efficiency of 38%) due to the suppression of exciton dark states. Furthermore, our microcavity design provides mechanical stability, and voltage-controlled tuning of the emitter/mode resonance and of the polarization state.
引用
收藏
页码:704 / 708
页数:5
相关论文
共 29 条
[1]   Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit [J].
Boto, AN ;
Kok, P ;
Abrams, DS ;
Braunstein, SL ;
Williams, CP ;
Dowling, JP .
PHYSICAL REVIEW LETTERS, 2000, 85 (13) :2733-2736
[2]  
BOUWMEESTER D, 2000, PHYS QUANTUM INFORM
[3]   Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities [J].
Chang, WH ;
Chen, WY ;
Chang, HS ;
Hsieh, TP ;
Chyi, JI ;
Hsu, TM .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[4]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[5]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[6]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[7]   Enhanced luminescence from InAs/GaAs quantum dots [J].
Holtz, P. O. ;
Moskalenko, E. S. ;
Larsson, M. ;
Karlsson, K. F. ;
Schoenfeld, W. V. ;
Petroff, P. M. .
OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY III, 2006, 6401
[8]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[9]   Stable solid-state source of single photons [J].
Kurtsiefer, C ;
Mayer, S ;
Zarda, P ;
Weinfurter, H .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :290-293
[10]   Oriented semiconducting polymer nanostructures as on-demand room-temperature single-photon sources [J].
Lee, TH ;
Kumar, P ;
Mehta, A ;
Xu, KW ;
Dickson, RM ;
Barnes, MD .
APPLIED PHYSICS LETTERS, 2004, 85 (01) :100-102