Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness

被引:2063
作者
Schloss, PD [1 ]
Handelsman, J [1 ]
机构
[1] Univ Wisconsin, Dept Plant Pathol, Madison, WI 53706 USA
关键词
D O I
10.1128/AEM.71.3.1501-1506.2005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Although copious qualitative information describes the members of the diverse microbial communities on Earth, statistical approaches for quantifying and comparing the numbers and compositions of lineages in communities are lacking. We present a method that addresses the challenge of assigning sequences to operational taxonomic units (OTUs) based on the genetic distances between sequences. We developed a computer program, DOTUR, which assigns sequences to OTUs by using either the furthest, average, or nearest neighbor algorithm for each distance level. DOTUR uses the frequency at which each OTU is observed to construct rarefaction and collector's curves for various measures of richness and diversity. We analyzed 16S rRNA gene libraries derived from Scottish and Amazonian soils and the Sargasso Sea with DOTUR, which assigned sequences to OTUs rapidly and reliably based on the genetic distances between sequences and identified previous inconsistencies and errors in assigning sequences to OTUs. An analysis of the two 16S rRNA gene libraries from soil demonstrated that they do not contain enough sequences to support a claim that they contain different numbers of bacterial lineages with statistical confidence (P > 0.05), nor do they contain enough sequences to provide a robust estimate of species richness when an OTU is defined as containing sequences that are no more than 3% different from each other. In contrast, the richness of OTUs at the 3% level in the Sargasso Sea collection began to plateau after the sampling of 690 sequences. We anticipate that an equivalent extent of sampling for soil would require sampling more than 10,000 sequences, almost 100 times the size of typical sequence collections obtained from soil.
引用
收藏
页码:1501 / 1506
页数:6
相关论文
共 30 条
[1]   BACTERIAL COMMUNITY STRUCTURES OF PHOSPHATE-REMOVING AND NON-PHOSPHATE-REMOVING ACTIVATED SLUDGES FROM SEQUENCING BATCH REACTORS [J].
BOND, PL ;
HUGENHOLTZ, P ;
KELLER, J ;
BLACKALL, LL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (05) :1910-1916
[2]   Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation [J].
Borneman, J ;
Triplett, EW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2647-2653
[3]   ROBUST ESTIMATION OF POPULATION-SIZE WHEN CAPTURE PROBABILITIES VARY AMONG ANIMALS [J].
BURNHAM, KP ;
OVERTON, WS .
ECOLOGY, 1979, 60 (05) :927-936
[4]  
CHAO A, 1984, SCAND J STAT, V11, P265
[5]  
CHAO A, 1993, BIOMETRIKA, V80, P193, DOI 10.1093/biomet/80.1.193
[6]   ESTIMATING THE NUMBER OF CLASSES VIA SAMPLE COVERAGE [J].
CHAO, A ;
LEE, SM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) :210-217
[7]   The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:: Development and evaluation of a more comprehensive probe set [J].
Daims, H ;
Brühl, A ;
Amann, R ;
Schleifer, KH ;
Wagner, M .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1999, 22 (03) :434-444
[8]  
Dunbar J, 1999, APPL ENVIRON MICROB, V65, P1662
[9]  
Durbin R., 1998, Biological sequence analysis: Probabilistic models of proteins and nucleic acids
[10]   Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms [J].
Everett, KDE ;
Bush, RM ;
Andersen, AA .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1999, 49 :415-440