Central schemes and contact discontinuities

被引:26
作者
Kurganov, A [1 ]
Petrova, G [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 06期
关键词
Euler equations of gas dynamics; partial characteristic decomposition; fully-discrete and semi-discrete central schemes;
D O I
10.1051/m2an:2000126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a family of new second-order Godunov-type central schemes for one-dimensional systems of conservation laws. They are a less dissipative generalization of the central-upwind schemes, proposed in [A. Kurganov et al., submitted to SIAM J. Sci. Comput.], whose construction is based on the maximal one-sided local speeds of propagation. We also present a recipe, which helps to improve the resolution of contact waves. This is achieved by using the partial characteristic decomposition, suggested by Nessyahu and Tadmor [J. Comput. Phys. 87 (1990) 408-463], which is efficiently applied in the context of the new schemes. The method is tested on the one-dimensional Euler equations, subject to different initial data, and the results are compared to the numerical solutions, computed by other second-order central schemes. The numerical experiments clearly illustrate the advantages of the proposed technique.
引用
收藏
页码:1259 / 1275
页数:17
相关论文
共 26 条
[1]  
ARMINJON P, 1995, CR ACAD SCI I-MATH, V320, P85
[2]  
Arminjon P, 1997, INT J COMPUT FLUID D, V9, P1
[3]   High-order central schemes for hyperbolic systems of conservation laws [J].
Bianco, F ;
Puppo, G ;
Russo, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01) :294-322
[4]   ON GODUNOV-TYPE METHODS FOR GAS-DYNAMICS [J].
EINFELDT, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :294-318
[5]   THE EXISTENCE OF SOLITARY WAVES [J].
FRIEDRICHS, KO ;
HYERS, DH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (03) :517-550
[6]  
HARTEN A, 1978, MATH COMPUT, V32, P363, DOI 10.2307/2006149
[7]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]
[8]   HIGH-RESOLUTION SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) :357-393
[9]   Nonoscillatory central schemes for multidimensional hyperbolic conservation laws [J].
Jiang, GS ;
Tadmor, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :1892-1917
[10]  
KUGANOV A, IN PRESS NUMER MATH