Euclidean path integral, D0-branes and Schwarzschild black holes in Matrix theory

被引:18
作者
Ohta, N [1 ]
Zhou, JG [1 ]
机构
[1] Osaka Univ, Dept Phys, Toyonaka, Osaka 560, Japan
关键词
Euclidean path integral; DO-branes; Matrix theory;
D O I
10.1016/S0550-3213(98)00255-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The partition function in Matrix theory is constructed by the Euclidean path integral method. The D0-branes, which move around in the finite region with a typical size of Schwarzschild radius, are chosen as the background. The mass and entropy of the system obtained from the partition function contain the parameters of the background. After averaging the mass and entropy over the parameters, we find that they match the properties of 11D Schwarzschild black holes. The period beta of Euclidean time can be identified with the reciprocal of the boosted Hawking temperature. The entropy S is shown to be proportional to the number N of Matrix theory partons, which is a consequence of the D0-brane background. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:125 / 136
页数:12
相关论文
共 33 条
[1]  
[Anonymous], HEPTH9711162
[2]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[3]  
BANKS T, HEPTH9712236
[4]  
BANKS T, HEPTH9709091
[5]  
BANKS T, HEPTH9711005
[6]  
BIGATTI D, HEPTH9711063
[7]   Long-distance interactions of D-brane bound states and longitudinal five-brane in M(atrix) theory [J].
Chepelev, I ;
Tseytlin, AA .
PHYSICAL REVIEW D, 1997, 56 (06) :3672-3685
[8]  
CHEPELEV I, HEPTH9704127
[9]  
Chepelev I., HEPTH9709087
[10]  
CHEPELEV I, HEPTH9705120