Ab initio folding of helix bundle proteins using molecular dynamics simulations

被引:107
作者
Jang, SM
Kim, E
Shin, S [1 ]
Pak, Y
机构
[1] Seoul Natl Univ, Sch Chem, Seoul 151747, South Korea
[2] Pusan Natl Univ, Dept Chem, Pusan 609735, South Korea
关键词
D O I
10.1021/ja034701i
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have demonstrated that ab initio fast folding simulations at 400 K using a GB implicit solvent model with an all-atom based force field can describe the spontaneous formation of nativelike structures for the 36-residue villin headpiece and the 46-residue fragment B of Staphylococcal protein A. An implicit solvent model combined with high-temperature MD makes it possible to perform direct folding simulations of small- to medium-sized proteins by reducing the computational requirements tremendously. In the early stage of folding of the villin headpiece and protein A, initial hydrophobic collapse and rapid formation of helices were found to play important roles. For protein A, the third helix forms first in the early stage of folding and exhibits higher stability. The free energy profiles calculated from the folding simulations suggested that both of the helix-bundle proteins show a two-state thermodynamic behavior and protein A exhibits rather broad native basins.
引用
收藏
页码:14841 / 14846
页数:6
相关论文
共 62 条
[1]   Staphylococcal protein A: Unfolding pathways, unfolded states, and differences between the B and E domains [J].
Alonso, DOV ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :133-138
[2]   Absence of a stable intermediate on the folding pathway of protein A [J].
Bai, YW ;
Karimi, A ;
Dyson, HJ ;
Wright, PE .
PROTEIN SCIENCE, 1997, 6 (07) :1449-1457
[3]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   Novel methods of sampling phase space in the simulation of biological systems [J].
Berne, BJ ;
Straub, JE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (02) :181-189
[6]   Characterization of the folding kinetics of a three-helix bundle protein via a minimalist Langevin model [J].
Berriz, GF ;
Shakhnovich, EI .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (03) :673-685
[7]   FIRST-PRINCIPLES CALCULATION OF THE FOLDING FREE-ENERGY OF A 3-HELIX BUNDLE PROTEIN [J].
BOCZKO, EM ;
BROOKS, CL .
SCIENCE, 1995, 269 (5222) :393-396
[8]   THE STABILITY AND UNFOLDING OF AN IGG BINDING-PROTEIN BASED UPON THE B-DOMAIN OF PROTEIN-A FROM STAPHYLOCOCCUS-AUREUS PROBED BY TRYPTOPHAN SUBSTITUTION AND FLUORESCENCE SPECTROSCOPY [J].
BOTTOMLEY, SP ;
POPPLEWELL, AG ;
SCAWEN, M ;
WAN, T ;
SUTTON, BJ ;
GORE, MG .
PROTEIN ENGINEERING, 1994, 7 (12) :1463-1470
[9]  
BRESCHER A, 1979, P NATL ACAD SCI USA, V76, P2321
[10]   Folding free energy surface of a three-stranded β-sheet protein [J].
Bursulaya, BD ;
Brooks, CL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (43) :9947-9951