Optimizing Kernel Functions Using Transfer Learning from Unlabeled Data

被引:3
作者
Abbasnejad, M. Ehsan [1 ]
Ramachandram, Dhanesh [1 ]
Mandava, Rajeswari [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
来源
2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009) | 2009年
关键词
Machine Learning; Kernel Methods; Learning the Kernels; Support Vector Machine (SVM); Transfer Learning;
D O I
10.1109/ICMV.2009.10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an approach to learn the kernel which uses transferred knowledge from unlabeled data to cope with situations where training examples are scarce. In our approach, unlabeled data has been used to construct an optimized kernel that better generalizes on the target dataset. For the proposed kernel learning algorithm, Fisher Discriminant Analysis (FDA) is used in conjunction with Maximum Mean Discrepancy (MMD) test of statistics to optimize a base kernel using labeled and unlabeled data. Thereafter; the constructed kernel from both labeled and unlabeled datasets is used in SVM to evaluate the results which proved to increase prediction accuracy.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 18 条
[1]   Improving support vector machine classifiers by modifying kernel functions [J].
Amari, S ;
Wu, S .
NEURAL NETWORKS, 1999, 12 (06) :783-789
[2]   Integrating structured biological data by Kernel Maximum Mean Discrepancy [J].
Borgwardt, Karsten M. ;
Gretton, Arthur ;
Rasch, Malte J. ;
Kriegel, Hans-Peter ;
Schoelkopf, Bernhard ;
Smola, Alex J. .
BIOINFORMATICS, 2006, 22 (14) :E49-E57
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]  
Crammer K., 2002, NEURAL INFORM PROCES, P537
[5]  
Cristianini N, 2002, ADV NEUR IN, V14, P367
[6]  
Fukunaga K., 1990, Introduction to Statistical Pattern Recognition, DOI DOI 10.5555/92131
[7]  
Gretton A., 2006, J MACH LEARN RES, P1
[8]  
Lanckriet GRG, 2004, J MACH LEARN RES, V5, P27
[9]  
Lee S., 2007, P INT C MACHINE LEAR, P489
[10]  
Mika S., 1999, NEURAL NETWORKS SIGN, P41, DOI DOI 10.1109/NNSP.1999.788121