Image sharpening by flows based on triple well potentials

被引:37
作者
Gilboa, G [1 ]
Sochen, N
Zeevi, YY
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Tel Aviv Univ, Dept Appl Math, IL-69978 Tel Aviv, Israel
[3] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
关键词
image filtering; image enhancement; image sharpening; nonlinear diffusion; hyper-diffusion; variational image processing;
D O I
10.1023/B:JMIV.0000011322.17255.85
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image sharpening in the presence of noise is formulated as a non-convex variational problem. The energy functional incorporates a gradient-dependent potential, a convex fidelity criterion and a high order convex regularizing term. The first term attains local minima at zero and some high gradient magnitude, thus forming a triple well-shaped potential ( in the one-dimensional case). The energy minimization flow results in sharpening of the dominant edges, while most noisy fluctuations are filtered out.
引用
收藏
页码:121 / 131
页数:11
相关论文
共 38 条
[1]   SIGNAL AND IMAGE-RESTORATION USING SHOCK FILTERS AND ANISOTROPIC DIFFUSION [J].
ALVAREZ, L ;
MAZORRA, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :590-605
[2]   PROPOSED EXPERIMENTAL TESTS OF A THEORY OF FINE MICROSTRUCTURE AND THE 2-WELL PROBLEM [J].
BALL, JM ;
JAMES, RD .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1650) :389-450
[3]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[4]  
CARSTENSEN C, 1997, BERICHTSREIHE MATH S, V97
[5]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[6]   Total variation blind deconvolution [J].
Chan, TF ;
Wong, CK .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :370-375
[7]  
Charbonnier P., 1994, Proceedings ICIP-94 (Cat. No.94CH35708), P168, DOI 10.1109/ICIP.1994.413553
[8]  
DASCAL L, 2003, LNCS, V2659, P196
[9]   Young measure solutions for a nonlinear parabolic equation of forward-backward type [J].
Demoulini, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :376-403
[10]  
Deriche R., 1995, EDP TRAITEMENT IMAGE