Glutaredoxins and thioredoxins in plants

被引:155
作者
Meyer, Yves [1 ]
Siala, Wafi [1 ]
Bashandy, Talaat [1 ]
Riondet, Christophe [1 ]
Vignols, Florence [1 ]
Reichheld, Jean Philippe [1 ]
机构
[1] Univ Perpignan, CNRS UP IRD, UMR 5096, F-66860 Perpignan, France
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2008年 / 1783卷 / 04期
关键词
thioredoxin; glutaredoxin; redox; Arabidopsis; rice;
D O I
10.1016/j.bbamcr.2007.10.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During the 70s and 80s two plant thioredoxin systems were identified. The chloroplastic system is composed of a ferredoxin-dependent thioredoxin, with two thioredoxin types (m and f) regulating the activity of enzymes implicated in photosynthetic carbon assimilation. In the cytosol of heterotrophic tissues, an NADP dependent thioredoxin reductase and a thioredoxin (h) were identified. The first plant glutaredoxin was only identified later, in 1994. Our view of plant thioredoxins and glutaredoxins was profoundly modified by the sequencing programs which revealed an unexpected number of genes encoding not only the previously identified disulfide reductases, but also numerous new types. At the same time it became clear that plant genomes encode chloroplastic, cytosolic and mitochondrial peroxiredoxins, suggesting a major role for redoxins in anti-oxidant defense. Efficient proteomics approaches were developed allowing the characterization of numerous thioredoxin target proteins. They are implicated in different aspects of plant life including development and adaptation to environmental changes and stresses. The most important challenge for the next years will probably be to identify in planta which redoxin reduces which target, a question which remains unsolved due to the low specificities of redoxins in vitro and the numerous redundancies which in most cases mask the phenotype of redoxin mutants. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:589 / 600
页数:12
相关论文
共 85 条
[1]   Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism [J].
Baier, M ;
Noctor, G ;
Foyer, CH ;
Dietz, KJ .
PLANT PHYSIOLOGY, 2000, 124 (02) :823-832
[2]   A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts [J].
Balmer, Y ;
Vensel, WH ;
Cai, N ;
Manieri, W ;
Schürmann, P ;
Hurkman, WJ ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (08) :2988-2993
[3]   Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts [J].
Balmer, Y ;
Koller, A ;
del Val, G ;
Schürmann, P ;
Buchanan, BB .
PHOTOSYNTHESIS RESEARCH, 2004, 79 (03) :275-280
[4]   Arabidopsis gene knockout:: phenotypes wanted [J].
Bouché, N ;
Bouchez, D .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (02) :111-117
[5]  
BRANDES HK, 1993, J BIOL CHEM, V268, P18411
[6]   Resemblance and dissemblance of Arabidopsis type II peroxiredoxins:: Similar sequences for divergent gene expression, protein localization, and activity [J].
Bréhélin, C ;
Meyer, EH ;
de Souris, JP ;
Bonnard, G ;
Meyer, Y .
PLANT PHYSIOLOGY, 2003, 132 (04) :2045-2057
[7]   Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress [J].
Broin, M ;
Rey, P .
PLANT PHYSIOLOGY, 2003, 132 (03) :1335-1343
[8]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[9]   The ferredoxin/thioredoxin system:: from discovery to molecular structures and beyond [J].
Buchanan, BB ;
Schürmann, P ;
Wolosiuk, RA ;
Jacquot, JP .
PHOTOSYNTHESIS RESEARCH, 2002, 73 (1-3) :215-222
[10]   The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins [J].
Cabrillac, D ;
Cock, JM ;
Dumas, C ;
Gaude, T .
NATURE, 2001, 410 (6825) :220-223