Interaction of the E2 and E3 components of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus -: Use of a truncated protein domain in NMR spectroscopy

被引:23
作者
Allen, MD [1 ]
Broadhurst, RW [1 ]
Solomon, RG [1 ]
Perham, RN [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge Ctr Mol Recognit, Cambridge CB2 1GA, England
关键词
pyruvate dehydrogenase; protein-protein interaction; NMR spectroscopy; multienzyme complex; protein domains;
D O I
10.1111/j.1432-1033.2004.04405.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A N-15-labelled peripheral-subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2p) and the dimer of a solubilized interface domain (E3int) derived from the dihydrolipoyl dehydrogenase (E3) were used to investigate the basis of the interaction of E2p with E3 in the assembly of the pyruvate dehydrogenase multienzyme complex of. Bacillus stearothermophilus. Thirteen of the 55 amino acids in the PSBD show significant changes in either or both of the N-15 and H-1 amide chemical shifts when the PSBD forms a 1:1 complex with E3int. All of the 13 amino acids reside near the N-terminus of helix I of PSBD or in the loop region between helix II and helix III. N-15 backbone dynamics experiments on PSBD indicate that the structured region extends from Val129 to Ala168, with limited structure present in residues Asn126 to Arg128. The presence Of structure in the region before helix I was confirmed by a refinement of the NMR structure of uncomplexed PSBD. Comparison of the crystal structure of the PSBD bound to E3 [Mande SS, Sarfaty S, Allen MD, Perham RN & Hol WGJ (1996) Structure 4, 277-286] with the solution structure of uncomplexed PSBD described here indicates that the PSBD undergoes almost no conformational change upon binding to E3. These studies exemplify and validate the novel use of a solubilized, truncated protein domain in overcoming the limitations of high molecular mass on NMR spectroscopy.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 46 条
[1]   Crystal structure of human branched-chain α-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease [J].
AEvarsson, A ;
Chuang, JL ;
Wynn, RM ;
Turley, S ;
Chuang, DT ;
Hol, WGJ .
STRUCTURE, 2000, 8 (03) :277-291
[2]  
AEvarsson A, 1999, NAT STRUCT BIOL, V6, P785
[3]   Structure of the pyruvate dehydrogenase multienzyme complex E1 component from Escherichia coli at 1.85 Å resolution [J].
Arjunan, P ;
Nemeria, N ;
Brunskill, A ;
Chandrasekhar, K ;
Sax, M ;
Yan, Y ;
Jordan, F ;
Guest, JR ;
Furey, W .
BIOCHEMISTRY, 2002, 41 (16) :5213-5221
[4]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[5]   Three-dimensional structure in solution of the N-terminal lipoyl domain of the pyruvate dehydrogenase complex from Azotobacter vinelandii [J].
Berg, A ;
Vervoort, J ;
deKok, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 244 (02) :352-360
[6]   Solution structure of the lipoyl domain of the 2-oxyglutarate dehydrogenase complex from Azotobacter vinelandii [J].
Berg, A ;
Vervoort, J ;
deKok, A .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 261 (03) :432-442
[7]   PRECISE VICINAL COUPLING-CONSTANTS 3JHN-ALPHA IN PROTEINS FROM NONLINEAR FITS OF J-MODULATED [N-15,H-1]-COSY EXPERIMENTS [J].
BILLETER, M ;
NERI, D ;
OTTING, G ;
QIAN, YQ ;
WUTHRICH, K .
JOURNAL OF BIOMOLECULAR NMR, 1992, 2 (03) :257-274
[8]   Structural basis for flip-flop action of thiamin pyrophosphate-dependent enzymes revealed by human pyruvate dehydrogenase [J].
Ciszak, EM ;
Korotchkina, LG ;
Dominiak, PM ;
Sidhu, S ;
Patel, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (23) :21240-21246
[9]   3-DIMENSIONAL STRUCTURE OF THE LIPOYL DOMAIN FROM BACILLUS-STEAROTHERMOPHILUS PYRUVATE-DEHYDROGENASE MULTIENZYME COMPLEX [J].
DARDEL, F ;
DAVIS, AL ;
LAUE, ED ;
PERHAM, RN .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 229 (04) :1037-1048
[10]   MAIN-CHAIN-DIRECTED STRATEGY FOR THE ASSIGNMENT OF H-1-NMR SPECTRA OF PROTEINS [J].
ENGLANDER, SW ;
WAND, AJ .
BIOCHEMISTRY, 1987, 26 (19) :5953-5958