Full-spectrum spectral imaging system analytical model

被引:60
作者
Kerekes, JP [1 ]
Baum, JE
机构
[1] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA
[2] MIT, Lincoln Lab, Lexington, MA 02420 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2005年 / 43卷 / 03期
关键词
full-spectrum modeling; hyperspectral imaging; midwave infrared (MWIR); multispectral imaging; remote sensing system modeling; thermal infrared;
D O I
10.1109/TGRS.2004.841428
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In support of hyperspectral sensor system design and parameter tradeoff investigations, an analytical end-to-end remote sensing system performance forecasting model has been extended to cover the visible through longwave infrared portion of the optical spectrum (0.4-14 mum). The model uses statistical descriptions of surface spectral reflectances/emissivities and temperature variations in a scene and propagates them through the effects of the atmosphere, the sensor, and processing transformations. A resultant system performance metric is then calculated based on these propagated statistics. This paper presents theory for the analytical transformation of surface statistics to at-sensor spectral radiance statistics for a downward-looking hyperspectral sensor observing both reflected sunlight and thermally emitted radiation. Comparisons of the model predictions with measurements from an airborne hyperspectral sensor are presented. Example parameter trades are included to show the utility of the model for applications in sensor design and operation.
引用
收藏
页码:571 / 580
页数:10
相关论文
共 10 条
[1]   Impact of excess low frequency noise (ELFN) in Si:As impurity band conduction (IBC) focal plane arrays for astronomical applications [J].
Arrington, DC ;
Hubbs, JE ;
Gramer, ME ;
Dole, GA .
INFRARED DETECTORS AND FOCAL PLANE ARRAYS V, 1998, 3379 :361-370
[2]   MODTRAN cloud and multiple scattering upgrades with application to AVIRIS [J].
Berk, A ;
Bernstein, LS ;
Anderson, GP ;
Acharya, PK ;
Robertson, DC ;
Chetwynd, JH ;
Adler-Golden, SM .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :367-375
[3]   LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing [J].
Hackwell, JA ;
Warren, DW ;
Bongiovi, RP ;
Hansel, SJ ;
Hayhurst, TL ;
Mabry, DJ ;
Sivjee, MG ;
Skinner, JW .
IMAGING SPECTROMETRY II, 1996, 2819 :102-107
[4]  
Hearn D.-R., 1999, 1053 MIT LINC LAB
[5]   ATMOSPHERIC EFFECT ON SPATIAL-RESOLUTION OF SURFACE IMAGERY [J].
KAUFMAN, YJ .
APPLIED OPTICS, 1984, 23 (19) :3400-3408
[6]   AN ANALYTICAL MODEL OF EARTH-OBSERVATIONAL REMOTE-SENSING SYSTEMS [J].
KEREKES, JP ;
LANDGREBE, DA .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (01) :125-133
[7]   Spectral imaging system analytical model for subpixel object detection [J].
Kerekes, JP ;
Baum, JE .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (05) :1088-1101
[8]   Hyperspectral subpixel target detection using the linear mixing model [J].
Manolakis, D ;
Siracusa, C ;
Shaw, G .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1392-1409
[9]   The use of the empirical line method to calibrate remotely sensed data to reflectance [J].
Smith, GM ;
Milton, EJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (13) :2653-2662
[10]  
1998, REMOTE SENS ENV, V65