A restrictive role for Hedgehog signalling during otic specification in Xenopus

被引:20
作者
Koebernick, K
Hollemann, T
Pieler, T
机构
[1] Univ Gottingen, Inst Biochem & Mol Cell Biol, D-37077 Gottingen, Germany
[2] Univ Karlsruhe, Inst Zool 2, D-76131 Karlsruhe, Germany
关键词
Xenopus; Hedgehog; smoothened; patched; inner ear; Eya-1; Xdll-3; Pax-2; cyclopamine;
D O I
10.1016/S0012-1606(03)00242-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vertebrate inner ear development is initiated by the specification of the otic placode, an ectodermal structure induced by signals from neighboring tissue. Although several signaling molecules have been identified as candidate otic inducers, many details of the process of inner ear induction remain elusive. Here, we report that otic induction is responsive to the level of Hedgehog (Hh) signaling activity in Xenopus, making use of both gain- and loss-of-function approaches. Ectopic activation of Hedgehog signaling resulted in the development of ectopic vesicular structures expressing the otic marker genes XPax-2, Xdll-3, and Xwnt-3A, thus revealing otic identity. Induction of ectopic otic vesicles was also achieved by misexpression of two different inhibitors of Hh signaling: the putative Hh antagonist mHIP and XPtc lDeltaLoop2, a dominant-negative form of the Hh receptor Patched. In addition, misexpression of XPtc I DeltaLoop2 as well as treatment of Xenopus embryos with the specific Hh signaling antagonist cyclopamine resulted in the formation of enlarged otic vesicles. In summary, our observations suggest that a defined level of Hh signaling provides a restrictive environment for otic fate in Xenopus embryos. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:325 / 338
页数:14
相关论文
共 65 条
[1]   A human homologue of the Drosophila eyes absent gene underlies Branchio-Oto-Renal (BOR) syndrome and identifies a novel gene family [J].
Abdelhak, S ;
Kalatzis, V ;
Heilig, R ;
Compain, S ;
Samson, D ;
Vincent, C ;
Weil, D ;
Cruaud, C ;
Sahly, I ;
Leibovici, M ;
BitnerGlindzicz, M ;
Francis, M ;
Lacombe, D ;
Vigneron, J ;
Charachon, R ;
Boven, K ;
Bedbeder, P ;
VanRegemorter, N ;
Weissenbach, J ;
Petit, C .
NATURE GENETICS, 1997, 15 (02) :157-164
[2]  
Acampora D, 1999, DEVELOPMENT, V126, P3795
[3]   ANTERIOR DUPLICATION OF THE SONIC HEDGEHOG EXPRESSION PATTERN IN THE PECTORAL FIN BUDS OF ZEBRAFISH TREATED WITH RETINOIC ACID [J].
AKIMENKO, MA ;
EKKER, M .
DEVELOPMENTAL BIOLOGY, 1995, 170 (01) :243-247
[4]   The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal [J].
Alcedo, J ;
Ayzenzon, M ;
VonOhlen, T ;
Noll, M ;
Hooper, JE .
CELL, 1996, 86 (02) :221-232
[5]   Vertebrate cranial placodes I. Embryonic induction [J].
Baker, CVH ;
Bronner-Fraser, M .
DEVELOPMENTAL BIOLOGY, 2001, 232 (01) :1-61
[6]   Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly [J].
Belloni, E ;
Muenke, M ;
Roessler, E ;
Traverso, G ;
SiegelBartelt, J ;
Frumkin, A ;
Mitchell, HF ;
DonisKeller, H ;
Helms, C ;
Hing, AV ;
Heng, HHQ ;
Koop, B ;
Martindale, D ;
Rommens, JM ;
Tsui, LC ;
Scherer, SW .
NATURE GENETICS, 1996, 14 (03) :353-356
[7]   A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of Sonic hedgehog in the neural tube [J].
Briscoe, J ;
Chen, Y ;
Jessell, TM ;
Struhl, G .
MOLECULAR CELL, 2001, 7 (06) :1279-1291
[8]  
Chen WB, 2001, DEVELOPMENT, V128, P2385
[9]   Dual roles for patched in sequestering and transducing hedgehog [J].
Chen, Y ;
Struhl, G .
CELL, 1996, 87 (03) :553-563
[10]   Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function [J].
Chiang, C ;
Ying, LTT ;
Lee, E ;
Young, KE ;
Corden, JL ;
Westphal, H ;
Beachy, PA .
NATURE, 1996, 383 (6599) :407-413