Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching

被引:49
作者
Ances, BM
Wilson, DF
Greenberg, JH
Detre, JA
机构
[1] Univ Penn, Dept Neurol, Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
[3] Univ Penn, Sch Med, Cerebrovasc Res Ctr, Philadelphia, PA 19104 USA
关键词
cerebral blood flow; cerebral metabolic rate of O-2; oxygen-dependent phosphorescence quenching;
D O I
10.1097/00004647-200105000-00005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Changes in cerebral blood flow (CBF) using laser-Doppler and microvascular O-2 oxygen tension using oxygen-dependent phosphorescence quenching in the rat somatosensory cortex were obtained during electrical forepaw stimulation. The signal-averaged CBF response resulting from electrical forepaw stimulation consisted of an initial peak (t = 3.1 +/- 0.8 seconds after onset of stimulation), followed by a plateau phase that was maintained throughout the length of the stimulus. In contrast, microvascular O-2 tension changes were delayed, reached a plateau level (t = 23.5 +/- 1.7 seconds after the onset of stimulation) that remained for the length of the stimulus and for several seconds after stimulus termination, and then returned to baseline. Using Fick's equation and these dynamic measurements, changes in the calculated cerebral metabolic rate of oxygen (CMRO2) during functional stimulation were determined. The calculated CMRO2 response initially was comparable with the CBF, bur with protracted stimulation, CMRO2 changes were approximately one-third that of CBF changes. These results suggest that a complex relation exists, with comparable changes in CBF and CMRO2 initially occurring after stimulation but excessive changes in CBF compared with CMRO2 arising with protracted stimulation.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 51 条
[1]   GLYCOLYSIS-INDUCED DISCORDANCE BETWEEN GLUCOSE METABOLIC RATES MEASURED WITH RADIOLABELED FLUORODEOXYGLUCOSE AND GLUCOSE [J].
ACKERMANN, RF ;
LEAR, JL .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1989, 9 (06) :774-785
[2]   Transcranial laser doppler mapping of activation flow coupling of the rat somatosensory cortex [J].
Ances, BM ;
Detre, JA ;
Takahashi, K ;
Greenberg, JH .
NEUROSCIENCE LETTERS, 1998, 257 (01) :25-28
[3]   Coupling of neural activation to blood flow in the somatosensory cortex of rats is time-intensity separable, but not linear [J].
Ances, BM ;
Zarahn, E ;
Greenberg, JH ;
Detre, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (06) :921-930
[4]   Effects of variations in interstimulus interval on activation-flow coupling response and somatosensory evoked potentials with forepaw stimulation in the rat [J].
Ances, BM ;
Greenberg, JH ;
Detre, JA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (02) :290-297
[5]   Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging [J].
Bakin, JS ;
Kwon, MC ;
Masino, SA ;
Weinberger, NM ;
Frostig, RD .
CEREBRAL CORTEX, 1996, 6 (02) :120-130
[6]   HYPOXIA INCREASES VELOCITY OF BLOOD-FLOW THROUGH PARENCHYMAL MICROVASCULAR SYSTEMS IN RAT-BRAIN [J].
BERECZKI, D ;
WEI, L ;
OTSUKA, T ;
ACUFF, V ;
PETTIGREW, K ;
PATLAK, C ;
FENSTERMACHER, J .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1993, 13 (03) :475-486
[7]   Dynamics of blood flow and oxygenation changes during brain activation: The balloon model [J].
Buxton, RB ;
Wong, EC ;
Frank, LR .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :855-864
[8]   A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation [J].
Buxton, RB ;
Frank, LR .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (01) :64-72
[9]   Calibrated functional MRI: Mapping the dynamics of oxidative metabolism [J].
Davis, TL ;
Kwong, KK ;
Weisskoff, RM ;
Rosen, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1834-1839
[10]   Signal averaged laser Doppler measurements of activation-flow coupling in the rat forepaw somatosensory cortex [J].
Detre, JA ;
Ances, BM ;
Takahashi, K ;
Greenberg, JH .
BRAIN RESEARCH, 1998, 796 (1-2) :91-98