Finite volume partition functions and Itzykson-Zuber integrals

被引:90
作者
Jackson, AD
Sener, MK
Verbaarschot, JJM
机构
[1] Department of Physics, SUNY, Stony Brook
关键词
D O I
10.1016/0370-2693(96)00993-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We find the finite volume QCD partition function for different quark masses. This is a generalization of a result obtained by Leutwyler and Smilga for equal quark masses. Our result is derived in the sector of zero topological charge using a generalization of the Itzykson-Zuber integral appropriate for arbitrary complex matrices. We present a conjecture regarding the result for arbitrary topological charge which reproduces the Leutwyler-Smilga result in the limit of equal quark masses. We derive a formula of the Itzykson-Zuber type for arbitrary rectangular complex matrices, extending the result of Guhr and Wettig obtained for square matrices.
引用
收藏
页码:355 / 360
页数:6
相关论文
共 13 条
[1]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[2]   DYSONS CORRELATION-FUNCTIONS AND GRADED SYMMETRY [J].
GUHR, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :336-347
[3]  
GUHR T, HEPTH9605110
[4]  
HUA L, 1963, HARMONIC ANAL FUNCTI
[5]   PLANAR APPROXIMATION .2. [J].
ITZYKSON, C ;
ZUBER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :411-421
[6]   SUSCEPTIBILITIES, THE SPECIFIC-HEAT, AND A CUMULANT IN 2-FLAVOR QCD [J].
KARSCH, F ;
LAERMANN, E .
PHYSICAL REVIEW D, 1994, 50 (11) :6954-6962
[7]   SPECTRUM OF DIRAC OPERATOR AND ROLE OF WINDING NUMBER IN QCD [J].
LEUTWYLER, H ;
SMILGA, A .
PHYSICAL REVIEW D, 1992, 46 (12) :5607-5632
[8]   A METHOD OF INTEGRATION OVER MATRIX VARIABLES [J].
MEHTA, ML .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (03) :327-340
[9]   CORRELATION-FUNCTIONS OF RANDOM MATRIX-ENSEMBLES RELATED TO CLASSICAL ORTHOGONAL POLYNOMIALS [J].
NAGAO, T ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (10) :3298-3322
[10]  
van Baal P., 1991, Nuclear Physics B, Proceedings Supplements, V20, P3, DOI 10.1016/0920-5632(91)90871-B