Small-sample estimation of negative binomial dispersion, with applications to SAGE data

被引:747
作者
Robinson, Mark D. [1 ,2 ]
Smyth, Gordon K. [1 ]
机构
[1] Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3050, Australia
[2] Univ Melbourne, Dept Med Biol, Parkville, Vic 3010, Australia
关键词
conditional likelihood; dispersion; negative binomial; quantile adjustment; serial analysis of gene expression;
D O I
10.1093/biostatistics/kxm030
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive a quantile-adjusted conditional maximum likelihood estimator for the dispersion parameter of the negative binomial distribution and compare its performance, in terms of bias, to various other methods. Our estimation scheme outperforms all other methods in very small samples, typical of those from serial analysis of gene expression studies, the motivating data for this study. The impact of dispersion estimation on hypothesis testing is studied. We derive an "exact" test that outperforms the standard approximate asymptotic tests.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 12 条
[1]   Overdispersed logistic regression for SAGE: Modelling multiple groups and covariates [J].
Baggerly, KA ;
Deng, L ;
Morris, JS ;
Aldaz, CM .
BMC BIOINFORMATICS, 2004, 5 (1)
[2]  
COX DR, 1987, J ROY STAT SOC B MET, V49, P1
[3]   Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources [J].
Kal, AJ ;
van Zonneveld, AJ ;
Benes, V ;
van den Berg, M ;
Koerkamp, MG ;
Albermann, K ;
Strack, N ;
Ruijter, JM ;
Richter, A ;
Dujon, B ;
Ansorge, W ;
Tabak, HF .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (06) :1859-1872
[4]   Modeling motor vehicle crashes using Poisson-gamma models: Examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter [J].
Lord, Dominique .
ACCIDENT ANALYSIS AND PREVENTION, 2006, 38 (04) :751-766
[5]   Identifying differential expression in multiple SAGE libraries: an overdispersed log-linear model approach [J].
Lu, J ;
Tomfohr, JK ;
Kepler, TB .
BMC BIOINFORMATICS, 2005, 6 (1)
[6]   Quasi-likelihood and pseudo-likelihood are not the same thing [J].
Nelder, JA .
JOURNAL OF APPLIED STATISTICS, 2000, 27 (08) :1007-1011
[7]  
NELDER JA, 1992, J ROY STAT SOC B MET, V54, P273
[8]   Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter [J].
Saha, K ;
Paul, S .
BIOMETRICS, 2005, 61 (01) :179-185
[9]  
Smyth GK, 2003, INST MATH S, V40, P115
[10]  
Smyth GK, 1996, J ROY STAT SOC B MET, V58, P565