Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells

被引:290
作者
Maeda, S
Hayashi, M
Komiya, S
Imamura, T
Miyazono, K
机构
[1] Japanese Fdn Canc Res, Inst Canc, Dept Biochem, Toshima Ku, Tokyo 1708455, Japan
[2] Kagoshima Univ, Grad Sch Med & Dent, Dept Neuromusculoskeletal Disorder, Kagoshima 890, Japan
[3] Univ Tokyo, Grad Sch Med, Dept Mol Pathol, Tokyo, Japan
关键词
BMP; kinase inhibitor; osteoblast; signal crosstalk; TGF-beta;
D O I
10.1038/sj.emboj.7600067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor-beta (TGF-beta), one of the most abundant cytokines in bone matrix, has positive and negative effects on bone formation, although the molecular mechanisms of these effects are not fully understood. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, induce bone formation in vitro and in vivo. Here, we show that osteoblastic differentiation of mouse C2C12 cells was greatly enhanced by the TGF-beta type I receptor kinase inhibitor SB431542. Endogenous TGF-beta was found to be highly active, and induced expression of inhibitory Smads during the maturation phase of osteoblastic differentiation induced by BMP-4. SB431542 suppressed endogenous TGF-beta signaling and repressed the expression of inhibitory Smads during this period, possibly leading to acceleration of BMP signaling. SB431542 also induced the production of alkaline phosphatase and bone sialoprotein, and matrix mineralization of human mesenchymal stem cells. Thus, signaling cross-talk between BMP and TGF-beta pathways plays a crucial role in the regulation of osteoblastic differentiation, and TGF-beta inhibitors may be invaluable for the treatment of various bone diseases by accelerating BMP-induced osteogenesis.
引用
收藏
页码:552 / 563
页数:12
相关论文
共 37 条
[1]   TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation [J].
Alliston, T ;
Choy, L ;
Ducy, P ;
Karsenty, G ;
Derynck, R .
EMBO JOURNAL, 2001, 20 (09) :2254-2272
[2]   Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans - A prospective, randomized clinical pilot trial - 2002 Volvo Award in clinical studies [J].
Boden, SD ;
Kang, J ;
Sandhu, H ;
Heller, JG .
SPINE, 2002, 27 (23) :2662-2673
[3]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[4]   Identification of novel inhibitors of the transforming growth factor β1 (TGF-β1) type 1 receptor (ALK5) [J].
Callahan, JF ;
Burgess, JL ;
Fornwald, JA ;
Gaster, LM ;
Harling, JD ;
Harrington, FP ;
Heer, J ;
Kwon, C ;
Lehr, R ;
Mathur, A ;
Olson, BA ;
Weinstock, J ;
Laping, NJ .
JOURNAL OF MEDICINAL CHEMISTRY, 2002, 45 (05) :999-1001
[5]  
Candia AF, 1997, DEVELOPMENT, V124, P4467
[6]   TGF-β signaling in tumor suppression and cancer progression [J].
Derynck, R ;
Akhurst, RJ ;
Balmain, A .
NATURE GENETICS, 2001, 29 (02) :117-129
[7]   Smad-dependent and Smad-independent pathways in TGF-β family signalling [J].
Derynck, R ;
Zhang, YE .
NATURE, 2003, 425 (6958) :577-584
[8]   Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation [J].
Ducy, P ;
Zhang, R ;
Geoffroy, V ;
Ridall, AL ;
Karsenty, G .
CELL, 1997, 89 (05) :747-754
[9]   Transforming growth factor-β1 (TGF-β)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-β-activated kinase 1 and mitogen-activated protein kinase kinase 3 [J].
Edlund, S ;
Bu, SH ;
Schuster, N ;
Aspenström, P ;
Heuchel, R ;
Heldin, NE ;
ten Dijke, P ;
Heldin, CH ;
Landström, M .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (02) :529-544
[10]   Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype [J].
Erlebacher, A ;
Derynck, R .
JOURNAL OF CELL BIOLOGY, 1996, 132 (1-2) :195-210