Printable Solar Cells from Advanced Solution-Processible Materials

被引:74
作者
Bae, Sang-Hoon [1 ,2 ]
Zhao, Hongxiang [1 ,2 ]
Hsieh, Yao-Tsung [1 ,2 ]
Zuo, Lijian [1 ,2 ]
De Marco, Nicholas [1 ,2 ]
Rim, You Seung [1 ,2 ]
Li, Gang [1 ,3 ]
Yang, Yang [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Kowloon, Hong Kong, Peoples R China
来源
CHEM | 2016年 / 1卷 / 02期
基金
美国国家科学基金会;
关键词
CROSS-COUPLING REACTIONS; CONJUGATED POLYMERS; HALIDE PEROVSKITES; LOW-COST; EFFICIENCY; LIGHT; BANDGAP; POLY(3-HEXYLTHIOPHENE); AGGREGATION; TRIHALIDE;
D O I
10.1016/j.chempr.2016.07.010
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Considering the terawatt global demand for energy, studies on renewable energy resources are regarded as one of the most important issues. Among the available renewable energy resources, solar energy is a strong candidate because of its abundance and clean nature. Traditional solar cells are typically not cost effective for large-scale implementation given the high processing costs. Solution-processible solar cells have been of great interest among researchers over the past few decades in an effort to lower the costs of solar technologies because they are more affordable than conventional solar technologies. In this review, we provide an overview of the major solution-processible thin-film solar cell technologies by focusing on three representative fields: polymeric organic, inorganic chalcogenide, and organic-inorganic hybrid perovskite solar cells. This review describes the historical development, material properties, device structures, and highest performance of each technology under a single-junction configuration. In addition, the challenges of each technology and the future outlook are briefly discussed.
引用
收藏
页码:197 / 219
页数:23
相关论文
共 96 条
[1]   An efficient descriptor model for designing materials for solar cells [J].
Alharbi, Fahhad H. ;
Rashkeev, Sergey N. ;
El-Mellouhi, Fedwa ;
Luethi, Hans P. ;
Tabet, Nouar ;
Kais, Sabre .
NPJ COMPUTATIONAL MATERIALS, 2015, 1
[2]  
[Anonymous], 2015, WORLD EN OUTL 2015
[3]   Organic/Organic' Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices [J].
Armstrong, Neal R. ;
Wang, Weining ;
Alloway, Dana M. ;
Placencia, Diogenes ;
Ratcliff, Erin ;
Brumbach, Michael .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (9-10) :717-731
[4]   Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency [J].
Bag, Santanu ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Zhu, Yu ;
Todorov, Teodor K. ;
Mitzi, David B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7060-7065
[5]   Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J].
Bao, Z ;
Dodabalapur, A ;
Lovinger, AJ .
APPLIED PHYSICS LETTERS, 1996, 69 (26) :4108-4110
[6]   A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Leclerc, Mario .
ADVANCED MATERIALS, 2007, 19 (17) :2295-+
[7]  
Bonnet D., 1972, Proceedings of 9th IEEE Photowltaics Specialists Conference, P129
[8]   2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications [J].
Cao, Duyen H. ;
Stoumpos, Constantinos C. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7843-7850
[9]   AMORPHOUS SILICON SOLAR-CELL [J].
CARLSON, DE ;
WRONSKI, CR .
APPLIED PHYSICS LETTERS, 1976, 28 (11) :671-673
[10]   A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER [J].
CHAPIN, DM ;
FULLER, CS ;
PEARSON, GL .
JOURNAL OF APPLIED PHYSICS, 1954, 25 (05) :676-677