Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure

被引:48
作者
Davies, Daniel W. [1 ]
Butler, Keith T. [1 ]
Skelton, Jonathan M. [1 ]
Xie, Congwei [2 ]
Oganov, Artem R. [3 ,4 ,5 ]
Walsh, Aron [6 ,7 ]
机构
[1] Univ Bath, Dept Chem, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England
[2] Northwestern Polytech Univ, Int Ctr Mat Discovery, Sch Mat Sci & Engn, Sci & Technol Thermostruct Composite Mat Lab, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Int Ctr Mat Discovery, Sch Mat Sci & Engn, Xian 710072, Shaanxi, Peoples R China
[4] Skolkovo Inst Sci & Technol, 3 Nobel St, Moscow 143026, Russia
[5] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[6] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
[7] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; STRUCTURE PREDICTION; OXIDES; GENERATION; PRINCIPLES; DISCOVERY;
D O I
10.1039/c7sc03961a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The standard paradigm in computational materials science is INPUT: STRUCTURE; OUTPUT: PROPERTIES, which has yielded many successes but is ill-suited for exploring large areas of chemical and configurational hyperspace. We report a high-throughput screening procedure that uses compositional descriptors to search for new photoactive semiconducting compounds. We show how feeding high-ranking element combinations to structure prediction algorithms can constitute a pragmatic computer-aided materials design approach. Techniques based on structural analogy (data mining of known lattice types) and global searches (direct optimisation using evolutionary algorithms) are combined for translating between chemical composition and crystal structure. The properties of four novel chalcohalides (Sn5S4Cl2, Sn4SF6, Cd5S4Cl2 and Cd4SF6) are predicted, of which two are calculated to have bandgaps in the visible range of the electromagnetic spectrum.
引用
收藏
页码:1022 / 1030
页数:9
相关论文
共 59 条
  • [1] [Anonymous], 2016, INORGANIC CRYSTAL ST
  • [2] Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects
    Bak, T
    Nowotny, J
    Rekas, M
    Sorrell, CC
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) : 991 - 1022
  • [3] Materials Prediction via Classification Learning
    Balachandran, Prasanna V.
    Theiler, James
    Rondinelli, James M.
    Lookman, Turab
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [4] New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations
    Castelli, Ivano E.
    Huser, Falco
    Pandey, Mohnish
    Li, Hong
    Thygesen, Kristian S.
    Seger, Brian
    Jain, Anubhav
    Persson, Kristin A.
    Ceder, Gerbrand
    Jacobsen, Karsten W.
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (02)
  • [5] New cubic perovskites for one- and two-photon water splitting using the computational materials repository
    Castelli, Ivano E.
    Landis, David D.
    Thygesen, Kristian S.
    Dahl, Soren
    Chorkendorff, Ib
    Jaramillo, Thomas F.
    Jacobsen, Karsten W.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) : 9034 - 9043
  • [6] Computational screening of perovskite metal oxides for optimal solar light capture
    Castelli, Ivano E.
    Olsen, Thomas
    Datta, Soumendu
    Landis, David D.
    Dahl, Soren
    Thygesen, Kristian S.
    Jacobsen, Karsten W.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) : 5814 - 5819
  • [7] Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment
    Chen, Wei
    Pohls, Jan-Hendrik
    Hautier, Geoffroy
    Broberg, Danny
    Bajaj, Saurabh
    Aydemir, Umut
    Gibbs, Zachary M.
    Zhu, Hong
    Asta, Mark
    Snyder, G. Jeffrey
    Meredig, Bryce
    White, Mary Anne
    Persson, Kristin
    Jain, Anubhav
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (20) : 4414 - 4426
  • [8] Computational Screening of All Stoichiometric Inorganic Materials
    Davies, Daniel W.
    Butler, Keith T.
    Jackson, Adam J.
    Morris, Andrew
    Frost, Jarvist M.
    Skelton, Jonathan M.
    Walsh, Aron
    [J]. CHEM, 2016, 1 (04): : 617 - 627
  • [9] Machine Learning Energies of 2 Million Elpasolite (ABC2D6) Crystals
    Faber, Felix A.
    Lindmaa, Alexander
    von Lilienfeld, O. Anatole
    Armiento, Rickard
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (13)
  • [10] A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions
    Faghaninia, Alireza
    Yu, Guodong
    Aydemir, Umut
    Wood, Max
    Chen, Wei
    Rignanese, Gian-Marco
    Snyder, G. Jeffrey
    Hautier, Geoffroy
    Jain, Anubhav
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (09) : 6743 - 6756