Diffusion of magnetic field lines in a confined RFP plasma

被引:2
作者
Bazzani, A
Di Sebastiano, A
Turchetti, G
机构
[1] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[3] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[4] Lab Tecnol Mat, I-40126 Bologna, Italy
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS | 1998年 / 20卷 / 12期
关键词
D O I
10.1007/BF03036597
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A volume-preserving symplectic map is proposed to describe the magnetic field lines when the Taylor equilibrium is perturbed in a genetic way. The standard scenario is observed by varying the perturbation strength, but the statistical properties in the chaotic regions are not simple due to the presence of boundaries and remnants of invariant structures. Simpler models of volume-preserving maps are proposed. The slowly modulated standard map captures the basic topological and statistical features. The diffusion is analytically described for large perturbations (above the break-up of the last KAM torus) in terms of correlation functions and for small perturbations using the adiabatic theory, provided that the modulation is sufficiently slow.
引用
收藏
页码:1795 / 1818
页数:24
相关论文
共 34 条
[1]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[2]  
BARTOLINI R, 1993, PART ACCEL, V52, P147
[3]   POINCARE MAP AND ANOMALOUS TRANSPORT IN A MAGNETICALLY CONFINED PLASMA [J].
BAZZANI, A ;
MALAVASI, M ;
SIBONI, S ;
PELLACANI, C ;
RAMBALDI, S ;
TURCHETTI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1989, 103 (06) :659-668
[4]   Action diffusion for symplectic maps with a noisy linear frequency [J].
Bazzani, A ;
Siboni, S ;
Turchetti, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :27-36
[5]  
BAZZANI A, 1989, ATTI SEMIN MAT FIS, V37, P157
[6]  
BAZZANI A, 1998, NATO ASI SER
[7]  
BAZZANI A, 1997, ACTION DIFFUSION SLO
[8]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[9]   DIFFUSION OF PARTICLES IN A SLOWLY MODULATED WAVE [J].
BRUHWILER, DL ;
CARY, JR .
PHYSICA D, 1989, 40 (02) :265-282
[10]   STATISTICAL CHARACTERIZATION OF PERIODIC, AREA-PRESERVING MAPPINGS [J].
CARY, JR ;
MEISS, JD ;
BHATTACHARJEE, A .
PHYSICAL REVIEW A, 1981, 23 (05) :2744-2746