Short peptide amyloid organization: Stabilities and conformations of the islet amyloid peptide NFGAIL

被引:98
作者
Zanuy, D
Ma, BY
Nussinov, R
机构
[1] NCI Frederick, Lab Expt & Computat Biol, Canc Res & Dev Ctr, Ft Detrick, MD 21702 USA
[2] NCI Frederick, Lab Expt & Computat Biol, Intramural Res Support Program, Sci Applicat Int Corp, Ft Detrick, MD 21702 USA
[3] Tel Aviv Univ, Sackler Fac Med, Dept Human Genet, Sackler Inst Mol Med, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/S0006-3495(03)74996-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Experimentally, short peptides have been shown to form amyloids similar to those of their parent proteins. Consequently, they present useful systems for studies of amyloid conformation. Here we simulate extensively the NFGAIL peptide, derived from the human islet amyloid polypeptide (residues 22-27). We simulate different possible strand/sheet organizations, from dinners to nonamers. Our simulations indicate that the most stable conformation is an antiparallel strand orientation within the sheets and parallel between sheets. Consistent with the alanine mutagenesis, we find that the driving force is the hydrophobic effect. Whereas the NFGAIL forms stable oligomers, the NAGAIL oligomer is unstable, and disintegrates very quickly after the beginning of the simulation. The simulations further identify a minimal seed size. Combined with our previous simulations of the prion-derived AGAAAAGA peptide, AAAAAAAA, and the Alzheimer Abeta fragments 16-22, 24-36,16-35, and 10-35, and the solid-state NMR data for Abeta fragments 16-22,10-35, and 1-40, some insight into the length and the sequence matching effects may be obtained.
引用
收藏
页码:1884 / 1894
页数:11
相关论文
共 33 条
[1]   Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils [J].
Antzutkin, ON ;
Balbach, JJ ;
Leapman, RD ;
Rizzo, NW ;
Reed, J ;
Tycko, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) :13045-13050
[2]   Analysis of the structural and functional elements of the minimal active fragment of islet amyloid polypeptide (IAPP) - An experimental support for the key role of the phenylalanine residue in amyloid formation [J].
Azriel, R ;
Gazit, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34156-34161
[3]   Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR [J].
Balbach, JJ ;
Ishii, Y ;
Antzutkin, ON ;
Leapman, RD ;
Rizzo, NW ;
Dyda, F ;
Reed, J ;
Tycko, R .
BIOCHEMISTRY, 2000, 39 (45) :13748-13759
[4]   An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid [J].
Balbirnie, M ;
Grothe, R ;
Eisenberg, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2375-2380
[5]   Propagating structure of Alzheimer's β-amyloid(10-35) is parallel β-sheet with residues in exact register [J].
Benzinger, TLS ;
Gregory, DM ;
Burkoth, TS ;
Miller-Auer, H ;
Lynn, DG ;
Botto, RE ;
Meredith, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13407-13412
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[8]   Folding free energy surface of a three-stranded β-sheet protein [J].
Bursulaya, BD ;
Brooks, CL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (43) :9947-9951
[9]   The interrelationships of side-chain and main-chain conformations in proteins [J].
Chakrabarti, P ;
Pal, D .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2001, 76 (1-2) :1-102
[10]   Kinetic partitioning of protein folding and aggregation [J].
Chiti, F ;
Taddei, N ;
Baroni, F ;
Capanni, C ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (02) :137-143