The core and the Weber set for bicooperative games

被引:9
作者
Bilbao, J. M. [1 ]
Fernandez, J. R. [1 ]
Jimenez, N. [1 ]
Lopez, J. J. [1 ]
机构
[1] Univ Seville, Escuela Super Ingn, Seville 41092, Spain
关键词
bicooperative games; core; Weber set; bisupermodular games;
D O I
10.1007/s00182-006-0066-x
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies two classical solution concepts for the structure of bicooperative games. First, we define the core and the Weber set of a bicooperative game and prove that the core is always contained in the Weber set. Next, we introduce a special class of bicooperative games, the so-called bisupermodular games, and show that these games are the only ones in which the core and the Weber set coincide.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 18 条
[1]  
AUBIN JP, 1991, MATH OPER, V6, P1
[2]  
BILBAO J. M., 2000, Cooperative games on combinatorial structures
[3]   The Shapley-Shubik index, the donation paradox and ternary games [J].
Chua, VCH ;
Huang, HC .
SOCIAL CHOICE AND WELFARE, 2003, 20 (03) :387-403
[4]   HIERARCHICAL ORGANIZATION STRUCTURES AND CONSTRAINTS ON COALITION-FORMATION [J].
DERKS, JJM ;
GILLES, RP .
INTERNATIONAL JOURNAL OF GAME THEORY, 1995, 24 (02) :147-163
[5]   A SHORT PROOF OF THE INCLUSION OF THE CORE IN THE WEBER SET [J].
DERKS, JJM .
INTERNATIONAL JOURNAL OF GAME THEORY, 1992, 21 (02) :149-150
[6]   Ternary voting games [J].
Felsenthal, DS ;
Machover, M .
INTERNATIONAL JOURNAL OF GAME THEORY, 1997, 26 (03) :335-351
[7]  
Gillies D, 1953, THESIS PRINCETON U P
[8]   Bi-capacities - II: the Choquet integral [J].
Grabisch, M ;
Labreuche, C .
FUZZY SETS AND SYSTEMS, 2005, 151 (02) :237-259
[9]   Bi-capacities - I: definition, Mobius transform and interaction [J].
Grabisch, M ;
Labreuche, C .
FUZZY SETS AND SYSTEMS, 2005, 151 (02) :211-236
[10]   SHAPLEY VALUE FOR MULTICHOICE COOPERATIVE GAMES .1. [J].
HSIAO, CR ;
RAGHAVAN, TES .
GAMES AND ECONOMIC BEHAVIOR, 1993, 5 (02) :240-256