Anisotropic colossal magnetoresistance effects in Fe1-xCuxCr2S4 -: art. no. 144419

被引:42
作者
Fritsch, V [1 ]
Deisenhofer, J
Fichtl, R
Hemberger, J
von Nidda, HAK
Mücksch, M
Nicklas, M
Samusi, D
Thompson, JD
Tidecks, R
Tsurkan, V
Loidl, A
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Moldavian Acad Sci, Inst Appl Phys, Kishinev 2028, Moldova
来源
PHYSICAL REVIEW B | 2003年 / 67卷 / 14期
关键词
D O I
10.1103/PhysRevB.67.144419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed study of the electronic transport and magnetic properties of Fe1-xCuxCr2S4 (xless than or equal to0.5) on single crystals is presented. The resistivity is investigated for 2less than or equal toTless than or equal to300 K in magnetic fields up to 140 kOe and under hydrostatic pressure up to 16 kbar. In addition magnetization and ferromagnetic resonance (FMR) measurements were performed. FMR and magnetization data reveal a pronounced magnetic anisotropy, which develops below the Curie temperature, T-C, and increases strongly towards lower temperatures. Increasing the Cu concentration reduces this effect. At temperatures below 35 K the magnetoresistance, MR=[rho(0)-rho(H)]/rho(0), exhibits a strong dependence on the direction of the magnetic field, probably due to an enhanced anisotropy. Applying the field along the hard axis leads to a change of sign and a strong increase in the absolute value of the magnetoresistance. On the other hand the magnetoresistance remains positive down to lower temperatures, exhibiting a smeared out maximum with the magnetic field applied along the easy axis. The results are discussed in the ionic picture using a triple-exchange model for electron hopping as well as a half metal utilizing a band picture.
引用
收藏
页数:8
相关论文
共 39 条
[1]   HALL-EFFECT AND MAGNETORESISTANCE IN FE1-XCUXCR2S4 [J].
ANDO, K ;
NISHIHARA, Y ;
OKUDA, T ;
TSUSHIMA, T .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (03) :1917-1919
[2]   PROBLEM OF USING KINK-POINT LOCUS TO DETERMINE CRITICAL EXPONENT BETA [J].
ARROTT, A .
JOURNAL OF APPLIED PHYSICS, 1971, 42 (04) :1282-&
[3]  
Campbell I. A., 1982, Ferromagnetic materials. A handbook on the properties of magnetically ordered substances. Vol.3, P747, DOI 10.1016/S1567-2719(82)03012-1
[4]   Evidence for a non-double-exchange mechanism in FeCr2S4 [J].
Chen, ZW ;
Tan, S ;
Yang, ZR ;
Zhang, YH .
PHYSICAL REVIEW B, 1999, 59 (17) :11172-11174
[5]   NEW CLASS OF MATERIALS - HALF-METALLIC FERROMAGNETS [J].
DEGROOT, RA ;
MUELLER, FM ;
VANENGEN, PG ;
BUSCHOW, KHJ .
PHYSICAL REVIEW LETTERS, 1983, 50 (25) :2024-2027
[6]   UNIFIED DESCRIPTION OF THE COOPERATIVE JAHN-TELLER EFFECT IN FECR2S4 AND THE IMPURITY JAHN-TELLER EFFECT IN COCR2S4-FE2+ [J].
FEINER, LF .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (07) :1515-1524
[7]  
Goldstein L., 1976, AIP C P, V29, P405
[8]   DESCRIPTIONS OF OUTER D ELECTRONS IN THIOSPINELS [J].
GOODENOUGH, JB .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1969, 30 (02) :261-+
[9]  
Gurevich A. G., 1996, MAGNETIZATION OSCILL
[10]   ELECTRICAL TRANSPORT IN FECR2S4-CUCR2S4 SPINELS [J].
HAACKE, G ;
BEEGLE, LC .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (2P1) :656-&