PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis

被引:212
作者
Noh, YS [1 ]
Amasino, RM [1 ]
机构
[1] Univ Wisconsin, Coll Agr & Life Sci, Dept Biochem, Madison, WI 53706 USA
关键词
D O I
10.1105/tpc.012161
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proper control of the floral transition is critical for reproductive success in flowering plants. In Arabidopsis, FLOWERING LOCUS C (FLC) is a floral repressor upon which multiple floral regulatory pathways converge. Mutations in PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1) suppress the FLC-mediated delay of flowering as a result of the presence of FRIGIDA or of mutations in autonomous pathway genes. PIE1 is required for high levels of FLC expression in the shoot apex, but it is not required for FLC expression in roots. PIE1 is similar to ATP-dependent, chromatin-remodeling proteins of the ISWI and SWI2/SNF2 family. The role of PIE1 as an activator of FLC is consistent with the general role of ISWI and SWI2/ SNF2 family genes as activators of gene expression. The pie1 mutation also causes early flowering in noninductive photoperiods independently of FLC; thus, PIE1 appears to be involved in multiple flowering pathways. PIE1 also plays a role in petal development, as revealed by the suppression of petal defects of the curly leaf mutant by the pie1 mutation.
引用
收藏
页码:1671 / 1682
页数:12
相关论文
共 55 条
[1]  
Aasland R, 1996, TRENDS BIOCHEM SCI, V21, P87, DOI 10.1016/0968-0004(96)30009-1
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Disruption of the plant gene MOM releases transcriptional silencing of methylated genes [J].
Amedeo, P ;
Habu, Y ;
Afsar, K ;
Scheid, OM ;
Paszkowski, J .
NATURE, 2000, 405 (6783) :203-206
[4]   The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression [J].
Aukerman, MJ ;
Lee, I ;
Weigel, D ;
Amasino, RM .
PLANT JOURNAL, 1999, 18 (02) :195-203
[5]   Molecular genetic analysis of flowering time in Arabidopsis [J].
Aukerman, MJ ;
Amasino, RM .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1996, 7 (03) :427-433
[6]   Biological functions of the ISWI chromatin remodeling complex NURF [J].
Badenhorst, P ;
Voas, M ;
Rebay, I ;
Wu, C .
GENES & DEVELOPMENT, 2002, 16 (24) :3186-3198
[7]   Integration of floral inductive signals in Arabidopsis [J].
Blázquez, MA ;
Weigel, D .
NATURE, 2000, 404 (6780) :889-892
[8]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[9]   GENES CONFERRING LATE FLOWERING IN ARABIDOPSIS-THALIANA [J].
BURN, JE ;
SMYTH, DR ;
PEACOCK, WJ ;
DENNIS, ES .
GENETICA, 1993, 90 (2-3) :147-155
[10]   MAPPING FRI, A LOCUS CONTROLLING FLOWERING TIME AND VERNALIZATION RESPONSE IN ARABIDOPSIS-THALIANA [J].
CLARKE, JH ;
DEAN, C .
MOLECULAR & GENERAL GENETICS, 1994, 242 (01) :81-89