Application of support vector machines for T-cell epitopes prediction

被引:111
作者
Zhao, YD
Pinilla, C
Valmori, D
Martin, R
Simon, R [1 ]
机构
[1] NCI, Biometr Res Branch, NIH, Bethesda, MD 20892 USA
[2] Torrey Pines Inst Mol Studies, San Diego, CA 92121 USA
[3] CHU Vaudois, Ludwig Inst Canc Res, Div Clin Oncoimmunol, CH-1011 Lausanne, Switzerland
[4] Natl Inst Neurol Disorder & Stroke, Neuroimmunol Branch, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btg255
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The T-cell receptor, a major histocompatibility complex (MHC) molecule, and a bound antigenic peptide, play major roles in the process of anti gen-specific T-cell activation. T-cell recognition was long considered exquisitely specific. Recent data also indicate that it is highly flexible, and one receptor may recognize thousands of different pepticles. Deciphering the patterns of pepticles that elicit a MHC restricted T-cell response is critical for vaccine development. Results: For the first time we develop a support vector machine (SVM) for T-cell epitope prediction with an MHC type I restricted T-cell clone. Using cross-validation, we demonstrate that SVMs can be trained on relatively small data sets to provide prediction more accurate than those based on previously published methods or on MHC binding.
引用
收藏
页码:1978 / 1984
页数:7
相关论文
共 40 条
[1]  
[Anonymous], 1978, Atlas of protein sequence and structure
[2]  
Breiman L., 1984, BIOMETRICS, DOI DOI 10.2307/2530946
[3]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[4]   Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network [J].
Brusic, V ;
Rudy, G ;
Honeyman, M ;
Hammer, J ;
Harrison, L .
BIOINFORMATICS, 1998, 14 (02) :121-130
[5]   Multi-class protein fold recognition using support vector machines and neural networks [J].
Ding, CHQ ;
Dubchak, I .
BIOINFORMATICS, 2001, 17 (04) :349-358
[6]   Prediction of MHC class I binding peptides, using SVMHC -: art. no. 25 [J].
Dönnes, P ;
Elofsson, A .
BMC BIOINFORMATICS, 2002, 3 (1)
[7]  
ENGELHARD VH, 1994, ANNU REV IMMUNOL, V12, P181, DOI 10.1146/annurev.immunol.12.1.181
[8]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914
[9]   Two complementary methods for predicting peptides binding major histocompatibility complex molecules [J].
Gulukota, K ;
Sidney, J ;
Sette, A ;
DeLisi, C .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (05) :1258-1267
[10]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422