Functional genomics of P450s

被引:352
作者
Schuler, MA [1 ]
Werck-Reichhart, D
机构
[1] Univ Illinois, Dept Cell & Struct Biol, Urbana, IL 61801 USA
[2] Univ Strasbourg, Inst Plant Mol Biol, Dept Plant Stress Response, CNRS,UPR 2357, F-67083 Strasbourg, France
关键词
cytochrome P450 monooxygenases; plant biochemistry; gene expression; mutants; microarrays; oligonucleotide arrays;
D O I
10.1146/annurev.arplant.54.031902.134840
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxicative pathways. Those P450s in biosynthetic pathways play critical roles in the synthesis of lignins, UV protectants, pigments, defense compounds, fatty acids, hormones, and signaling molecules. Those in catabolic pathways participate in the breakdown of endogenous compounds and toxic compounds encountered in the environment. Because of their roles in this wide diversity of metabolic processes, plant P450 proteins and transcripts can serve as downstream reporters for many different biochemical pathways responding to chemical, developmental, and environmental cues. This review focuses initially on defining P450 biochemistries, nomenclature systems, and the relationships between genes in the extended P450 superfamily that exists in all plant species. Subsequently, it focuses on outlining the many approaches being used to assign function to individual P450 proteins and gene loci. The examples of assigned P450 activities that are spread throughout this review highlight the importance of understanding and utilizing P450 sequences as markers for linking biochemical pathway responses to physiological processes.
引用
收藏
页码:629 / 667
页数:43
相关论文
共 199 条
[1]   Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice [J].
Akashi, T ;
Aoki, T ;
Ayabe, S .
PLANT PHYSIOLOGY, 1999, 121 (03) :821-828
[2]   CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes isoflavone 2′-hydroxylase [J].
Akashi, T ;
Aoki, T ;
Ayabe, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 251 (01) :67-70
[3]   Identification of a cytochrome P450 cDNA encoding (2S)-flavanone 2-hydroxylase of licorice (Glycyrrhiza echinata L.; Fabaceae) which represents licodione synthase and flavone synthase II [J].
Akashi, T ;
Aoki, T ;
Ayabe, S .
FEBS LETTERS, 1998, 431 (02) :287-290
[4]   Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin -: Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes [J].
Andersen, MD ;
Busk, PK ;
Svendsen, I ;
Moller, BL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1966-1975
[5]  
[Anonymous], 1992, METHODS ARABIDOPSIS
[6]   Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor [J].
Bak, S ;
Olsen, CE ;
Petersen, BL ;
Moller, BL ;
Halkier, BA .
PLANT JOURNAL, 1999, 20 (06) :663-671
[7]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[8]   Cloning and expression in Escherichia coli of the obtusifoliol 14 alpha-demethylase of Sorghum bicolor (L) Moench, a cytochrome P450 orthologous to the sterol 14 alpha-demethylases (CYP51) from fungi and mammals [J].
Bak, S ;
Kahn, RA ;
Olsen, CE ;
Halkier, BA .
PLANT JOURNAL, 1997, 11 (02) :191-201
[9]   Cloning of three A-type cytochromes p450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome p450 in the biosynthesis of the cyanogenic glucoside dhurrin [J].
Bak, S ;
Kahn, RA ;
Nielsen, HL ;
Moller, BL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 36 (03) :393-405
[10]   The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis [J].
Bak, S ;
Feyereisen, R .
PLANT PHYSIOLOGY, 2001, 127 (01) :108-118