Van der Waals density functionals applied to solids

被引:4000
作者
Klimes, Jiri [1 ,2 ]
Bowler, David R. [1 ,3 ]
Michaelides, Angelos [1 ,2 ]
机构
[1] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
[2] UCL, Dept Chem, London WC1E 6BT, England
[3] UCL, Dept Phys & Astron, London WC1E 6BT, England
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 19期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
EXCHANGE-CORRELATION ENERGY; AUGMENTED-WAVE METHOD; BASIS-SET; DISPERSION CORRECTIONS; METALLIC SURFACE; NOBLE-METALS; MOLECULES; LIQUID; WATER; COMPLEXES;
D O I
10.1103/PhysRevB.83.195131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The van der Waals density functional (vdW-DF) of M. Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] is a promising approach for including dispersion in approximate density functional theory exchange-correlation functionals. Indeed, an improved description of systems held by dispersion forces has been demonstrated in the literature. However, despite many applications, standard general tests on a broad range of materials including traditional "hard" matter such asmetals, ionic compounds, and insulators are lacking. Such tests are important not least because many of the applications of the vdW-DF method focus on the adsorption of atoms and molecules on the surfaces of solids. Here we calculate the lattice constants, bulk moduli, and atomization energies for a range of solids using the original vdW-DF and several of its offspring. We find that the original vdW-DF overestimates lattice constants in a similar manner to how it overestimates binding distances for gas-phase dimers. However, some of the modified vdW functionals lead to average errors which are similar to those of PBE or better. Likewise, atomization energies that are slightly better than from PBE are obtained from the modified vdW-DFs. Although the tests reported here are for hard solids, not normally materials for which dispersion forces are thought to be important, we find a systematic improvement in cohesive properties for the alkali metals and alkali halides when nonlocal correlations are accounted for.
引用
收藏
页数:13
相关论文
共 80 条
[1]   van der Waals interactions in density-functional theory [J].
Andersson, Y ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :102-105
[2]   Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules [J].
Antony, Jens ;
Grimme, Stefan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (45) :5287-5293
[3]   Functional designed to include surface effects in self-consistent density functional theory [J].
Armiento, R ;
Mattsson, AE .
PHYSICAL REVIEW B, 2005, 72 (08)
[4]   The SIESTA method;: developments and applicability [J].
Artacho, Emilio ;
Anglada, E. ;
Dieguez, O. ;
Gale, J. D. ;
Garcia, A. ;
Junquera, J. ;
Martin, R. M. ;
Ordejon, P. ;
Pruneda, J. M. ;
Sanchez-Portal, D. ;
Soler, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
[5]   ON THE LARGE-GRADIENT BEHAVIOR OF THE DENSITY FUNCTIONAL EXCHANGE ENERGY [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (12) :7184-7187
[6]   Exchange-hole dipole moment and the dispersion interaction revisited [J].
Becke, Axel D. ;
Johnson, Erin R. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (15)
[7]   Rings sliding on a honeycomb network: Adsorption contours, interactions, and assembly of benzene on Cu(111) [J].
Berland, K. ;
Einstein, T. L. ;
Hyldgaard, P. .
PHYSICAL REVIEW B, 2009, 80 (15)
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   To Wet or Not to Wet? Dispersion Forces Tip the Balance for Water Ice on Metals [J].
Carrasco, Javier ;
Santra, Biswajit ;
Klimes, Jiri ;
Michaelides, Angelos .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[10]   Application of van der Waals density functional to an extended system:: Adsorption of benzene and naphthalene on graphite [J].
Chakarova-Käck, SD ;
Schröder, E ;
Lundqvist, BI ;
Langreth, DC .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)