Non-Gaussian fixed point in four-dimensional pure compact U(1) gauge theory on the lattice

被引:47
作者
Jersak, J
Lang, CB
Neuhaus, T
机构
[1] KARL FRANZENS UNIV GRAZ, INST THEORET PHYS, GRAZ, AUSTRIA
[2] BUGH, FB8 PHYS, WUPPERTAL, GERMANY
关键词
D O I
10.1103/PhysRevLett.77.1933
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The line of phase transitions separating the confinement phase from the Coulomb phase in the four-dimensional pure compact U(1) gauge theory with extended Wilson action is reconsidered. By means of a high precision simulation on spherical lattices and a finite-size scaling analysis we find that along a part of this line, including the Wilson action the critical scaling behavior is determined by one fixed point with non-Gaussian critical exponent nu = 0.365(8). This indicates the existence of a nontrivial and nonasymptotically free continuum limit of this theory, as well as of its dual equivalent.
引用
收藏
页码:1933 / 1936
页数:4
相关论文
共 40 条
[1]   FIXED BOUNDARY-CONDITIONS AND PHASE-TRANSITIONS IN PURE GAUGE COMPACT QED [J].
BAIG, M ;
FORT, H .
PHYSICS LETTERS B, 1994, 332 (3-4) :428-432
[2]   PHASE-TRANSITIONS IN ABELIAN LATTICE GAUGE THEORIES [J].
BANKS, T ;
MYERSON, R ;
KOGUT, J .
NUCLEAR PHYSICS B, 1977, 129 (03) :493-510
[3]   PHOTON IN U(1) LATTICE GAUGE-THEORY [J].
BERG, B ;
PANAGIOTAKOPOULOS, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (02) :94-97
[4]   COMPACT QED WITH AN EXTENDED LATTICE ACTION [J].
BHANOT, G .
NUCLEAR PHYSICS B, 1982, 205 (02) :168-172
[5]   UNIVERSAL PROPERTIES OF U(1) GAUGE-THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1980, 170 (03) :369-387
[6]   WEIGHTS OF LINKS AND PLAQUETTES IN A RANDOM LATTICE [J].
CHRIST, NH ;
FRIEDBERG, R ;
LEE, TD .
NUCLEAR PHYSICS B, 1982, 210 (03) :337-346
[7]   MONTE-CARLO STUDY OF ABELIAN LATTICE GAUGE-THEORIES [J].
CREUTZ, M ;
JACOBS, L ;
REBBI, C .
PHYSICAL REVIEW D, 1979, 20 (08) :1915-1922
[8]   MONTE-CARLO STUDY OF RENORMALIZATION IN LATTICE GAUGE-THEORY [J].
CREUTZ, M .
PHYSICAL REVIEW D, 1981, 23 (08) :1815-1823
[9]   TRICRITICAL POINT IN LATTICE QED [J].
EVERTZ, HG ;
JERSAK, T ;
NEUHAUS, T ;
ZERWAS, PM .
NUCLEAR PHYSICS B, 1985, 251 (02) :279-298
[10]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198