Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements

被引:444
作者
Nakamura, R [1 ]
Nakato, Y [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Chem, Toyonaka, Osaka 5608531, Japan
关键词
D O I
10.1021/ja0388764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Primary intermediates of oxygen photoevolution (water photooxidation) reaction at the TiO2 (rutile)/ aqueous solution interface were investigated by in situ multiple internal reflection infrared (MIRIR) absorption and photoluminescence (PL) measurements. UV irradiation of TiO2 in the presence of 10 mM Fe3+ in the solution caused the appearance of a new peak at 838 cm(-1) and a shoulder at 812 cm(-1). Detailed investigations of the effects of solution pH, the presence of methanol as a hole scavenger, and isotope exchange in water ((H2O)-O-16-(H2O)-O-18) on the spectra have shown that the 838- and 812-cm(-1) bands can be assigned to the O-O stretching mode of surface TiOOH and TiOOTi, respectively, produced as primary intermediates of the oxygen photoevolution reaction. The results give strong support to our previously proposed mechanism that the oxygen photoevolution is initiated by a nucleophilic attack of a H2O molecule on a photogenerated hole at a surface lattice O site, not by oxidation of surface OH group by the hole. The conclusion is supported by PL measurements. A plausible reaction scheme is proposed for the oxygen photoevolution on TiO2 (rutile) in aqueous solutions of pH less than about 12.
引用
收藏
页码:1290 / 1298
页数:9
相关论文
共 92 条
[1]   ELECTRON-SPIN-RESONANCE AND PHOTOLUMINESCENCE EVIDENCE FOR THE PHOTOCATALYTIC FORMATION OF HYDROXYL RADICALS ON SMALL TIO2 PARTICLES [J].
ANPO, M ;
SHIMA, T ;
KUBOKAWA, Y .
CHEMISTRY LETTERS, 1985, (12) :1799-1802
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Imaging water dissociation on TiO2(110) -: art. no. 266103 [J].
Brookes, IM ;
Muryn, CA ;
Thornton, G .
PHYSICAL REVIEW LETTERS, 2001, 87 (26) :266103-1
[4]   Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles [J].
Cai, RX ;
Kubota, Y ;
Fujishima, A .
JOURNAL OF CATALYSIS, 2003, 219 (01) :214-218
[5]   Observation of an optical phonon band in situ in TiO2 electrochemistry:: a possible indicator of strongly trapped intermediates in the O2 evolution reaction [J].
Christensen, PA ;
Eameaim, J ;
Hamnett, A ;
Lin, WF .
CHEMICAL PHYSICS LETTERS, 2001, 344 (5-6) :488-494
[6]   Infrared spectroscopy of the TiO2/aqueous solution interface [J].
Connor, PA ;
Dobson, KD ;
McQuillan, AJ .
LANGMUIR, 1999, 15 (07) :2402-2408
[7]   Phosphate adsorption onto TiO2 from aqueous solutions:: An in situ internal reflection infrared spectroscopic study [J].
Connor, PA ;
McQuillan, AJ .
LANGMUIR, 1999, 15 (08) :2916-2921
[8]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[9]   In situ infrared spectroscopy of glyoxylic acid adsorption and photocatalysis on TiO2 in aqueous solution [J].
Ekström, GN ;
McQuillan, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (48) :10562-10565
[10]   Mechanism of photooxidation of trichloroethylene on TiO2: Detection of intermediates by infrared spectroscopy [J].
Fan, JF ;
Yates, JT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (19) :4686-4692