An adaptive chaos synchronization scheme applied to secure communication

被引:414
作者
Feki, M [1 ]
机构
[1] Univ Reims, Dept EEA, UFR Sci Exactas, F-51687 Reims 2, France
关键词
D O I
10.1016/S0960-0779(02)00585-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the problem of synchronization of a class of continuous-time chaotic systems using the drive-response concept. An adaptive observer-based response system is designed to synchronize with a given chaotic drive system whose dynamical model is subjected to unknown parameters. Using the Lyapunov stability theory an adaptation law is derived to estimate the unknown parameters. We show that synchronization is achieved asymptotically. The approach is next applied to chaos-based secure communication. To demonstrate the efficiency of the proposed scheme numerical simulations are presented. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 23 条
[1]   Adaptive synchronization methods for signal transmission on chaotic carriers [J].
Andrievsky, B .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (4-6) :285-293
[2]   Remarks on nonlinear adaptive observer design [J].
Besançon, G .
SYSTEMS & CONTROL LETTERS, 2000, 41 (04) :271-280
[3]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[4]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
[5]   SYNCHRONIZATION OF LORENZ-BASED CHAOTIC CIRCUITS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV ;
STROGATZ, SH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :626-633
[6]   CHAOS SHIFT KEYING - MODULATION AND DEMODULATION OF A CHAOTIC CARRIER USING SELF-SYNCHRONIZING CHUA CIRCUITS [J].
DEDIEU, H ;
KENNEDY, MP ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :634-642
[7]   Observer-based chaotic synchronization in the presence of unknown inputs [J].
Feki, M ;
Robert, B .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :831-840
[8]  
FEKI M, UNPUB PHYS LETT A
[9]  
FELDMANN U, 1995, IEEE INT S CIRC SYST, V1, P3
[10]  
HASLER M, 1994, IEEE INT S CIRC SYST, P314