Lagrangian coherent structures and mixing in two-dimensional turbulence

被引:693
作者
Haller, G [1 ]
Yuan, G [1 ]
机构
[1] Brown Univ, Lefschetz Ctr Dynam Syst, Div Appl Math, Providence, RI 02912 USA
来源
PHYSICA D | 2000年 / 147卷 / 3-4期
基金
美国国家科学基金会;
关键词
coherent structures; mixing two-dimensional turbulence; Okubo-Weiss criterion; invariant manifolds;
D O I
10.1016/S0167-2789(00)00142-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a Lagrangian definition for the boundaries of coherent structures in two-dimensional turbulence. The boundaries are defined as material lines that are linearly stable or unstable for longer times than any of their neighbors. Such material lines are responsible for stretching and folding in the mixing of passive tracers. We derive an analytic criterion that can be used to extract coherent structures with high precision from numerical or experimental data sets. The criterion provides a rigorous link between the Lagrangian concept of hyperbolicity, the Okubo-Weiss criterion, and vortex boundaries. We apply the results to simulations of two-dimensional barotropic turbulence. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:352 / 370
页数:19
相关论文
共 56 条
[2]   VORTICES, KINEMATICS AND CHAOS [J].
AREF, H ;
JONES, SW ;
MOFINA, S ;
ZAWADZKI, I .
PHYSICA D, 1989, 37 (1-3) :423-440
[3]   RELATIVE DISPERSION IN 2-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BASDEVANT, C ;
LEROY, P ;
SADOURNY, R .
JOURNAL OF FLUID MECHANICS, 1990, 214 :535-557
[4]   VORTICITY AND PASSIVE-SCALAR DYNAMICS IN TWO-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BASDEVANT, C ;
LEGRAS, B ;
SADOURNY, R .
JOURNAL OF FLUID MECHANICS, 1987, 183 :379-397
[5]   CHAOTIC ADVECTION IN POINT VORTEX MODELS AND 2-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BOFFETTA, G ;
PROVENZALE, A ;
VULPIANI, A .
PHYSICS OF FLUIDS, 1994, 6 (07) :2465-2474
[6]   ON THE VALIDITY OF THE WEISS CRITERION IN 2-DIMENSIONAL TURBULENCE [J].
BASDEVANT, C ;
PHILIPOVITCH, T .
PHYSICA D, 1994, 73 (1-2) :17-30
[7]   SELF-SIMILAR COHERENT STRUCTURES IN TWO-DIMENSIONAL DECAYING TURBULENCE [J].
BENZI, R ;
PATARNELLO, S ;
SANTANGELO, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05) :1221-1237
[8]  
BOWMAN K, 1999, MANIFOLD GEOMETRY MI
[9]   THE DYNAMICS OF FREELY DECAYING TWO-DIMENSIONAL TURBULENCE [J].
BRACHET, ME ;
MENEGUZZI, M ;
POLITANO, H ;
SULEM, PL .
JOURNAL OF FLUID MECHANICS, 1988, 194 :333-349
[10]   CHAOTIC ADVECTION IN A RAYLEIGH-BENARD FLOW [J].
CAMASSA, R ;
WIGGINS, S .
PHYSICAL REVIEW A, 1991, 43 (02) :774-797