pho3:: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh.

被引:91
作者
Zakhleniuk, OV [1 ]
Raines, CA [1 ]
Lloyd, JC [1 ]
机构
[1] Univ Essex, Dept Biol Sci, Colchester CO4 3SQ, Essex, England
基金
英国生物技术与生命科学研究理事会;
关键词
acid phosphatase; Arabidopsis (pho3 mutant); mutant; (Arabidopsis; phosphorus); phosphate metabolism; phosphorus nutrition;
D O I
10.1007/s004250000450
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A novel P-deficient mutant of Arabidopsis thaliana, pho3, was isolated by screening for root acid phosphatase (APase) activity in plants grown under low-P conditions. pho3 had 30% less APase activity in roots than the wild type and, in contrast to wild-type plants, root APase activity did not increase in response to growth in low P. However, shoot APase activity was higher in pho3 than in the wild-type plants. In addition, the pho3 mutant had a P-deficient phenotype, even when grown in P-sufficient conditions. The total P content of 11-d-old pho3 plants, grown in agar media with a plentiful supply of P, was about 25% lower than the wild-type level in the shoot, and about 65% lower in the roots. In the rosette leaves of mature soil-grown pho3 plants the total P content was again reduced, to about 50% of wild-type levels. pho3 exhibited a number of characteristics normally associated with low-P stress, including severely reduced growth, increased anthocyanin content (at least 100-fold greater than the wild type in soil-grown plants) and starch accumulation. The results suggest that the mutant is unable to respond to low internal P levels, and may lack a transporter or a signalling component involved in regulating P nutrition.
引用
收藏
页码:529 / 534
页数:6
相关论文
共 35 条
[1]   ACID PHOSPHATASE-11, A TIGHTLY LINKED MOLECULAR MARKER FOR ROOT-KNOT NEMATODE RESISTANCE IN TOMATO - FROM PROTEIN TO GENE, USING PCR AND DEGENERATE PRIMERS CONTAINING DEOXYINOSINE [J].
AARTS, JMMJG ;
HONTELEZ, JGJ ;
FISCHER, P ;
VERKERK, R ;
VANKAMMEN, A ;
ZABEL, P .
PLANT MOLECULAR BIOLOGY, 1991, 16 (04) :647-661
[2]  
[Anonymous], CURRENT TOPICS PLANT
[3]   THE ARABIDOPSIS RIBONUCLEASE GENE RNS1 IS TIGHTLY CONTROLLED IN RESPONSE TO PHOSPHATE LIMITATION [J].
BARIOLA, PA ;
HOWARD, CJ ;
TAYLOR, CB ;
VERBURG, MT ;
JAGLAN, VD ;
GREEN, PJ .
PLANT JOURNAL, 1994, 6 (05) :673-685
[4]   PHOSPHATE POOLS, PHOSPHATE TRANSPORT, AND PHOSPHATE AVAILABILITY [J].
BIELESKI, RL .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1973, 24 :225-252
[5]  
Clarkson D. T., 1990, Progress in Botany, P61
[6]   Functional analysis and cell-specific expression of a phosphate transporter from tomato [J].
Daram, P ;
Brunner, S ;
Persson, BL ;
Amrhein, N ;
Bucher, M .
PLANTA, 1998, 206 (02) :225-233
[7]   CHARACTERIZATION OF A PHOSPHATE-ACCUMULATOR MUTANT OF ARABIDOPSIS-THALIANA [J].
DELHAIZE, E ;
RANDALL, PJ .
PLANT PHYSIOLOGY, 1995, 107 (01) :207-213
[8]   Molecular characterisation of an S-like RNase of Nicotiana alata that is induced by phosphate starvation [J].
Dodds, PN ;
Clarke, AE ;
Newbigin, E .
PLANT MOLECULAR BIOLOGY, 1996, 31 (02) :227-238
[9]   Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana [J].
Dong, B ;
Rengel, Z ;
Delhaize, E .
PLANTA, 1998, 205 (02) :251-256
[10]   THE ROLE OF ACID-PHOSPHATASES IN PLANT PHOSPHORUS-METABOLISM [J].
DUFF, SMG ;
SARATH, G ;
PLAXTON, WC .
PHYSIOLOGIA PLANTARUM, 1994, 90 (04) :791-800