Spin-coated periodic mesoporous organosilica thin films - Towards a new generation of low-dielectric-constant materials

被引:150
作者
Hatton, BD
Landskron, K
Whitnall, W
Perovic, DD
Ozin, GA
机构
[1] Univ Toronto, Dept Chem, Mat Chem Res Grp, Toronto, ON M5S 3H6, Canada
[2] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
关键词
D O I
10.1002/adfm.200400221
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Periodic mesoporous organosilica (PMO) thin films have been produced using an evaporation-induced self-assembly (EISA) spin-coating procedure and a cationic surfactant template. The precursors are silsesquioxanes of the type (C2H5O)(3)Si-R-Si(OC2H5)(3) or R'-[Si(OC2H5)(3)](3) with R = methene (-CH2-) ethylene (-C2H2-), ethene (-C2H4-), 1,4-phenylene (C6H4), and R' = 1.3,5-phenylene (C6H3)- The surfactant is successfully removed by solvent extraction or calcination without any significant Si-C bond cleavage of the organic bridging groups R and R' within the channel walls. The materials have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and Si-29 and C-13 magic-angle spinning (MAS) NMR spectroscopy. The d-spacing of the PMOs is found to be a function of R. Nanoindentation measurements reveal increased mechanical strength and stiffness for the PMOs with R = CH2 and C2H4 compared to silica. Films with different organic-group content have been prepared using mixtures of silsesquioxane and tetramethylorthosilicate (TMOS) precursors. The dielectric constant (k) is found to decrease with organic content, and values as low as 1.8 have been measured for films thermally treated to cause a "self-hydrophobizing" bridging-to-terminal transformation of the methene to methyl groups with concomitant loss of silanols. Increasing the organic content and thermal treatment also increases the resistance to moisture adsorption in 60 and 80%-relative-humidity (RH) environments. Methene PMO films treated at 500 degrees C are found to be practically unchanged after five days exposure to 80% RH. These low dielectric constants, plus the good thermal and mechanical stability and the hydrophobicity suggest the potential utility of these films as low-k layers in microelectronics.
引用
收藏
页码:823 / 829
页数:7
相关论文
共 56 条
[1]   Periodic mesoporous organosilicas with organic groups inside the channel walls [J].
Asefa, T ;
MacLachlan, MJ ;
Coombs, N ;
Ozin, GA .
NATURE, 1999, 402 (6764) :867-871
[2]  
Asefa T, 2000, ANGEW CHEM INT EDIT, V39, P1808, DOI 10.1002/(SICI)1521-3773(20000515)39:10<1808::AID-ANIE1808>3.0.CO
[3]  
2-G
[4]   New nanocomposites: putting organic function "inside" the channel walls of periodic mesoporous silica [J].
Asefa, T ;
Yoshina-Ishii, C ;
MacLachlan, MJ ;
Ozin, GA .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (08) :1751-1755
[5]   MECHANICAL STABILITY OF SOL-GEL FILMS [J].
ATKINSON, A ;
GUPPY, RM .
JOURNAL OF MATERIALS SCIENCE, 1991, 26 (14) :3869-3873
[6]   LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA [J].
ATTARD, GS ;
GLYDE, JC ;
GOLTNER, CG .
NATURE, 1995, 378 (6555) :366-368
[7]   Controlling dielectric and optical properties of ordered mesoporous organosilicate films [J].
Balkenende, AR ;
de Theije, FK ;
Kriege, JCK .
ADVANCED MATERIALS, 2003, 15 (02) :139-+
[8]   Phase diagram for mesoporous CTAB-silica films prepared under dynamic conditions [J].
Besson, S ;
Gacoin, T ;
Ricolleau, C ;
Jacquiod, C ;
Boilot, JP .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (02) :404-409
[9]   Structural study of 3D-hexagonal mesoporous spin-coated sol-gel films [J].
Besson, S ;
Gacoin, T ;
Jacquiod, C ;
Ricolleau, C ;
Babonneau, D ;
Boilot, JP .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (06) :1331-1336
[10]  
BRINKER CJ, 1990, SOL GEL SCI, P506