Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

被引:3363
作者
Eastman, JA
Choi, SUS
Li, S
Yu, W
Thompson, LJ
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA
关键词
D O I
10.1063/1.1341218
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol % Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.
引用
收藏
页码:718 / 720
页数:3
相关论文
共 20 条