Averaging technique for FE - a posteriori error control in elasticity. Part I: Conforming FEM

被引:54
作者
Carstensen, C [1 ]
Funken, SA [1 ]
机构
[1] Univ Kiel, Math Seminar 2, D-24098 Kiel, Germany
关键词
elasticity; a posteriori error estimates; adaptive algorithm; reliability; finite element method;
D O I
10.1016/S0045-7825(00)00248-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Averaging techniques are popular tools in adaptive finite element methods for the numerical treatment of second-order partial differential equations since they provide efficient a posteriori error estimates by a simple postprocessing. In this paper, the reliability of any averaging estimator is shown for low order finite element methods in elasticity. Theoretical and numerical evidence supports that the reliability is up to the smoothness of given right-hand sides and independent of the structure of a shape-regular mesh. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:2483 / 2498
页数:16
相关论文
共 21 条
[1]   Remarks around 50 lines of Matlab: short finite element implementation [J].
Alberty, J ;
Carstensen, C ;
Funken, SA .
NUMERICAL ALGORITHMS, 1999, 20 (2-3) :117-137
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   VALIDATION OF A-POSTERIORI ERROR ESTIMATORS BY NUMERICAL APPROACH [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK ;
COPPS, K .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (07) :1073-1123
[4]  
Braess D., 1997, FINITE ELEMENTS
[5]  
BRENNER SC, 1994, MATH THEORY FINITE E, V15
[6]  
CARSTENSEN C, 1998, 9919 U KIEL
[7]  
CARSTENSEN C, 1998, IN PRESS SIAM J NUME
[8]  
CARSTENSEN C, 1997, 9711 C ALBRECHTS U K
[9]  
CARSTENSEN C, 1998, IN PRESS COMP METHOD
[10]  
CARSTENSEN C, 2000, 006 C ALBRECHTS U KI