Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study

被引:195
作者
Polania, Rafael [1 ]
Paulus, Walter [1 ]
Antal, Andrea [1 ]
Nitsche, Michael A. [1 ]
机构
[1] Univ Gottingen, Dept Clin Neurophysiol, D-37075 Gottingen, Germany
关键词
tDCS; Plasticity; Connectivity; Resting state; Stimulation; HUMAN MOTOR CORTEX; NONINVASIVE CORTICAL STIMULATION; SMALL-WORLD; CEREBRAL-CORTEX; DC-STIMULATION; VISUOMOTOR COORDINATION; FUNCTIONAL CONNECTIVITY; EXCITABILITY SHIFTS; CHRONIC STROKE; NETWORKS;
D O I
10.1016/j.neuroimage.2010.09.085
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2287 / 2296
页数:10
相关论文
共 46 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   Efficiency and cost of economical brain functional networks [J].
Achard, Sophie ;
Bullmore, Edward T. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) :174-183
[3]  
Albert Neil B, 2009, Commun Integr Biol, V2, P530
[4]   The Resting Human Brain and Motor Learning [J].
Albert, Neil B. ;
Robertson, Edwin M. ;
Miall, R. Chris .
CURRENT BIOLOGY, 2009, 19 (12) :1023-1027
[5]   Interhemispheric asymmetry of the human motor cortex related to handedness and gender [J].
Amunts, K ;
Jäncke, L ;
Mohlberg, H ;
Steinmetz, H ;
Zilles, K .
NEUROPSYCHOLOGIA, 2000, 38 (03) :304-312
[6]   Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans [J].
Antal, A ;
Nitsche, MA ;
Kruse, W ;
Kincses, TZ ;
Hoffmann, KP ;
Paulus, W .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (04) :521-527
[7]   Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task [J].
Antal, Andrea ;
Begemeier, Silva ;
Nitsche, Michael A. ;
Paulus, Walter .
NEUROPSYCHOLOGIA, 2008, 46 (13) :3157-3161
[8]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[9]   ACTION OF BRIEF POLARIZING CURRENTS ON CEREBRAL CORTEX OF RAT .1. DURING CURRENT FLOW + .2. IN PRODUCTION OF LONG-LECTING AFTER-EFFECTS [J].
BINDMAN, LJ ;
LIPPOLD, OCJ ;
REDFEARN, JW .
JOURNAL OF PHYSIOLOGY-LONDON, 1964, 172 (03) :369-&
[10]   Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation [J].
Boggio, Paulo S. ;
Castro, Leticia O. ;
Savagim, Edna A. ;
Braite, Renata ;
Cruz, Viviane C. ;
Rocha, Renata R. ;
Rigonatti, Sergio P. ;
Silva, Maria T. A. ;
Fregni, Felipe .
NEUROSCIENCE LETTERS, 2006, 404 (1-2) :232-236