Extended Boltzmann kinetic equation for turbulent flows

被引:445
作者
Chen, HD
Kandasamy, S
Orszag, S
Shock, R
Succi, S
Yakhot, V
机构
[1] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
[2] EXA Corp, Lexington, MA 02420 USA
[3] Yale Univ, Dept Math, New Haven, CT 06520 USA
[4] Boston Univ, Dept Aerosp & Mech Engn, Boston, MA 02215 USA
关键词
D O I
10.1126/science.1085048
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex fluid physics can be modeled using an extended kinetic (Boltzmann) equation in a more efficient way than using the continuum Navier-Stokes equations. Here, we explain this method for modeling fluid turbulence and show its effectiveness with the use of a computationally efficient implementation in terms of a discrete or "lattice" Boltzmann equation.
引用
收藏
页码:633 / 636
页数:4
相关论文
共 37 条
[1]  
Ansumali S, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056312
[2]   Stabilization of the lattice Boltzmann method by the H theorem:: A numerical test [J].
Ansumali, S ;
Karlin, IV .
PHYSICAL REVIEW E, 2000, 62 (06) :7999-8003
[3]  
BARTELHEIMER W, 2001, 20015332 SAE
[4]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[5]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[6]  
Bobylev A. V., 1982, Soviet Physics - Doklady, V27, P29
[7]   Entropic lattice Boltzmann methods [J].
Boghosian, BM ;
Yepez, J ;
Coveney, PV ;
Wager, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2007) :717-766
[8]  
Boltzmann L., 1872, Sitzungsberichte Akad. Wiss., V66, P275, DOI DOI 10.1007/978-3-322-84986-1_3
[9]  
BOUSSINESQ J, 1870, CR HEBD ACAD SCI, V71, P389
[10]  
CERCIGNANI C, 2002, RELATIVISTIC BOLTZMA