Projection of two-dimensional diffusion in a narrow channel onto the longitudinal dimension

被引:134
作者
Kalinay, P
Percus, JK
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
[3] NYU, Dept Phys, New York, NY 10003 USA
关键词
We acknowledge support from DOE Grant No. DE-FG02-02ER15292. One of the authors (P.K.) thanks the Courant Institute for its hospitality and also VEGA Grant No. 2/3107/24 for support;
D O I
10.1063/1.1899150
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diffusion in a narrow two-dimensional channel of width A(x), depending on the longitudinal coordinate x, is the object of our study. We show how the 2+1 dimensional diffusion equation can be projected onto a 1+1 dimensional one, governing corresponding one-dimensional density, in a steady-state approximation. Then we demonstrate the method on a nontrivial exactly solvable case for A(x)=x and discuss projection of the initial condition.
引用
收藏
页数:6
相关论文
共 9 条
[1]   Single-file transport of water molecules through a carbon nanotube [J].
Berezhkovskii, A ;
Hummer, G .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :064503/1-064503/4
[2]  
Bogolubov N.N., 1960, Problems of Dynamic Theory in Statistical Physics
[3]   Calculating the hopping times of confined fluids: Two hard disks in a box [J].
Bowles, RK ;
Mon, KK ;
Percus, JK .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (21) :10668-10673
[4]  
Hille B., 2001, Ion channels of excitable membranes, V3rd
[5]  
Jacobs M. H., 1967, DIFFUSION PROCESSES
[6]  
Karger J., 1992, Diffusion in zeolites and other microporous solids
[7]   DYNAMICS OF A SINGLE-FILE PORE - NON-FICKIAN BEHAVIOR [J].
LEVITT, DG .
PHYSICAL REVIEW A, 1973, 8 (06) :3050-3054
[8]   ANOMALOUS SELF-DIFFUSION FOR ONE-DIMENSIONAL HARD CORES [J].
PERCUS, JK .
PHYSICAL REVIEW A, 1974, 9 (01) :557-559
[9]   DIFFUSION PAST AN ENTROPY BARRIER [J].
ZWANZIG, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (10) :3926-3930