Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization
Mutations in the melanocortin-4 receptor (MC4R) gene are the most frequent monogenic causes of severe obesity. Most mutations have been described as heterozygous with loss of function, suggesting that haplo-insufficiency is the most likely mechanism of dominant inheritance. We detected a heterozygous mutation, D90N, in a patient with severe early-onset obesity. Functional characterization of the mutant receptor revealed normal cell-surface expression and binding properties but loss of signal transduction activity. In coexpression studies of wild-type (WT)-MC4R and D90N, the mutant receptor had a dominant-negative effect on WT-receptor function. Further investigation of this effect with sandwich enzyme-linked immunosorbent assays and fluorescence resonance energy transfer studies showed that the WT-MC4R and the D90N mutant form homodimers and heterodimers. We hypothesize that the dominant-negative effect of the D90N mutation is caused by a functionally altered WT-MC4R/D90N receptor heterodimer. These findings necessitate the reinvestigation of other heterozygous MC4R missense mutations to discriminate between haploinsufficiency and a dominant-negative effect. The finding of receptor dimerization highlights a more complex hypothalamic signaling network governing the regulation of body weight.