We present evidence in astrocytes that 5,6-epoxyeicosatrienoic acid, a cytochrome P450 epoxygenase metabolite elite of arachidonic acid, may be a component of calcium influx factor, the elusive link between release of Ca2+ from intracellular stores and capacitative Ca2+ influx. Capacitative influx of extracellular Ca2+ was inhibited by blockade of the two critical steps in epoxyeicosatrienoic acid synthesis: release of arachidonic acid from phospholipid stores by cytosolic phospholipase A(2) and cytochrome P450 metabolism of arachidonic acid. AAOCF(3), which inhibits cytosolic phospholipase A(2), blocked thapsigargin-stimulated release of arachidonic acid as well as thapsigargin-stimulated elevation of intracellular free calcium. Inhibition of P450 arachidonic acid metabolism with SKF525A econazole, or N methyl sulfonyl-6-(2-propargyloxyphenyl)hexanamide, a substrate inhibitor of P450 arachidonic acid metabolism, also blocked thapsigargin-stimulated Ca2+ influx. Nano- to picomolar 5,6-epoxyeicosatrienoic acid induced [Ca2+](i) elevation consistent with capacitative Ca2+ influx. We have previously shown that 5,6-epoxyeicosatrienoic acid is synthesized and released by astrocytes, When 5,6-epoxyeicosatrienoic acid was applied to the rat brain surface, it induced vasodilation, suggesting that calcium influx factor may also serve a paracrine function. In summary, our results suggest that 5,6-epoxyeicosatrienoic acid may be a component of calcium influx factor and may participate in regulation of cerebral vascular tone.