Chromatin remodeling and modification during HIV-1 tat-activated transcription

被引:67
作者
Pumfery, A
Deng, LW
Maddukuri, A
de la Fuente, C
Li, H
Wade, JD
Lambert, P
Kumar, A
Kashanchi, F
机构
[1] George Washington Univ, Sch Med, Dept Biochem & Mol Biol, Washington, DC 20037 USA
[2] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Biochem & Mol Biol, Newark, NJ 07103 USA
[3] Univ Melbourne, Howard Florey Inst, Parkville, Vic 3052, Australia
[4] Flinders Univ S Australia, Sch Med, Bedford Pk, SA 5042, Australia
关键词
HIV-1; Tat; transcription; chromatin; histone modification; acetylation; integration;
D O I
10.2174/1570162033485186
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of AIDS. Following entry into the host cell, the viral RNA is reverse transcribed into DNA and subsequently integrated into the host genome as a chromatin template. Chromatin structure may be responsible for silencing retroviral gene expression. Transcriptional activation occurs after ATP-dependent chromatin remodeling complexes alter chromatin structure and positioning of nucleosomes. Histone acetyltransferases (HATs), histone deacetylases (HDACs), kinases, and methyltransferases (HMTs), covalently modify nucleosomes by adding or removing chemical moieties in the N-terminal tails of histones. Recent advances have indicated that HIV-1 encoded proteins interact with chromatin remodeling complexes and historic modifying enzymes, implying that chromatin remodeling plays an important role in the HIV-1 life cycle. Nucleosomes are positioned on the HIV-1 LTR and are barriers to transcription. Following cellular activation, these nucleosomes are modified and repositioned allowing for activation of viral gene expression. Tat recruits various HATs to the HIV-1 promoter region and can also be acetylated by some of these enzymes. Unmodified Tat is involved in binding to the CBP/p300 and cdk9/cyclin T complexes and facilitates transcription initiation. Acetylated Tat dissociates from the TAR RNA structure and recruits bromodomain-containing chromatin modifying complexes such as p/CAF and SWI/SNF to facilitate transcription elongation. This review summarizes our current knowledge and understanding of chromatin remodeling complexes and their regulation of HIV-1 replication, and highlights the important contributions HIV-1 research has made to further our understanding of the transcription process.
引用
收藏
页码:343 / 362
页数:20
相关论文
共 289 条
[1]   DISTINCT REGIONS IN HUMAN T-CELL LYMPHOTROPIC VIRUS TYPE-I TAX MEDIATE INTERACTIONS WITH ACTIVATOR PROTEIN CREB AND BASAL TRANSCRIPTION FACTORS [J].
ADYA, N ;
GIAM, CZ .
JOURNAL OF VIROLOGY, 1995, 69 (03) :1834-1841
[2]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[3]   PARTICIPATION OF CORE HISTONE TAILS IN THE STABILIZATION OF THE CHROMATIN SOLENOID [J].
ALLAN, J ;
HARBORNE, N ;
RAU, DC ;
GOULD, H .
JOURNAL OF CELL BIOLOGY, 1982, 93 (02) :285-297
[4]   Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Widom, J .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (11) :3830-3839
[5]   THE HISTONE FOLD - A UBIQUITOUS ARCHITECTURAL MOTIF UTILIZED IN DNA COMPACTION AND PROTEIN DIMERIZATION [J].
ARENTS, G ;
MOUDRIANAKIS, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :11170-11174
[6]   The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression [J].
Ashburner, BP ;
Westerheide, SD ;
Baldwin, AS .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :7065-7077
[7]   TAR-INDEPENDENT REPLICATION OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 IN GLIAL-CELLS [J].
BAGASRA, O ;
KHALILI, K ;
SESHAMMA, T ;
TAYLOR, JP ;
POMERANTZ, RJ .
JOURNAL OF VIROLOGY, 1992, 66 (12) :7522-7528
[8]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[9]   Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure [J].
Bartsch, J ;
Truss, M ;
Bode, J ;
Beato, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (20) :10741-10746
[10]   STRUCTURAL STUDIES OF HIV-1 TAT PROTEIN [J].
BAYER, P ;
KRAFT, M ;
EJCHART, A ;
WESTENDORP, M ;
FRANK, R ;
ROSCH, P .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (04) :529-535