The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms

被引:367
作者
Mattick, JS [1 ]
Gagen, MJ
机构
[1] Univ Queensland, Inst Mol Biosci, Ctr Funct & Appl Gen, Brisbane, Qld 4072, Australia
[2] Kanazawa Univ, Dept Mech Syst Engn, Kanazawa, Ishikawa, Japan
[3] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England
[4] Univ Oxford, Dept Human Anat & Genet, Oxford, England
关键词
introns; noncoding RNA; genetic programming; RNAi; complexity; evolution;
D O I
10.1093/oxfordjournals.molbev.a003951
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
引用
收藏
页码:1611 / 1630
页数:20
相关论文
共 287 条
[1]   FUNCTION AND EXPRESSION OF ULTRABITHORAX IN THE DROSOPHILA EMBRYO [J].
AKAM, ME ;
MARTINEZARIAS, A ;
WEINZIERL, R ;
WILDE, CD .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1985, 50 :195-200
[2]   Chromodomains are protein-RNA interaction modules [J].
Akhtar, A ;
Zink, D ;
Becker, PB .
NATURE, 2000, 407 (6802) :405-409
[3]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[4]   The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases [J].
Allmang, C ;
Petfalski, E ;
Podtelejnikov, A ;
Mann, M ;
Tollervey, D ;
Mitchell, P .
GENES & DEVELOPMENT, 1999, 13 (16) :2148-2158
[5]   Functions of the exosome in rRNA, snoRNA and snRNA synthesis [J].
Allmang, C ;
Kufel, J ;
Chanfreau, G ;
Mitchell, P ;
Petfalski, E ;
Tollervey, D .
EMBO JOURNAL, 1999, 18 (19) :5399-5410
[6]   Mathematical model of the CA1 region of the rat hippocampus [J].
Almeida, ACG ;
de Lima, VMF ;
Infantosi, AFC .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (09) :2631-2646
[7]   Multimodal representation of space in the posterior parietal cortex and its use in planning movements [J].
Andersen, RA ;
Snyder, LH ;
Bradley, DC ;
Xing, J .
ANNUAL REVIEW OF NEUROSCIENCE, 1997, 20 :303-330
[8]   Meiotic transvection in fungi [J].
Aramayo, R ;
Metzenberg, RL .
CELL, 1996, 86 (01) :103-113
[9]   Colocalization of antisense RNAs and ribozymes with their target mRNAs [J].
Arndt, GM ;
Rank, GH .
GENOME, 1997, 40 (06) :785-797
[10]   A phylogenetic analysis reveals an unusual sequence conservation within introns involved in RNA editing [J].
Aruscavage, PJ ;
Bass, BL .
RNA, 2000, 6 (02) :257-269