A causal inference approach for constructing transcriptional regulatory networks

被引:28
作者
Xing, B
van der Laan, MJ
机构
[1] Genentech Inc, San Francisco, CA 94080 USA
[2] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
关键词
D O I
10.1093/bioinformatics/bti648
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Transcriptional regulatory networks specify the interactions among regulatory genes and between regulatory genes and their target genes. Discovering transcriptional regulatory networks helps us to understand the underlying mechanism of complex cellular processes and responses. Method: This paper describes a causal inference approach for constructing transcriptional regulatory networks using gene expression data, promoter sequences and information on transcription factor (TF) binding sites. The method first identifies active TFs in each individual experiment using a feature selection approach. TFs are viewed as 'treatments' and gene expression levels as 'responses'. For every TF and gene pair, a marginal structural model is built to estimate the causal effect of the TF on the expression level of the gene. The model parameters can be estimated using the G-computation procedure or the IPTW estimator. The P-value associated with the causal parameter in each of these models is used to measure how strongly a TF regulates a gene. These results are further used to infer the overall regulatory network structures. Results: Our analysis of yeast data suggests that the method is capable of identifying significant transcriptional regulatory interactions and the corresponding regulatory networks.
引用
收藏
页码:4007 / 4013
页数:7
相关论文
共 47 条
[1]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[2]   Predicting gene expression from sequence [J].
Beer, MA ;
Tavazoie, S .
CELL, 2004, 117 (02) :185-198
[3]   Molecular determinants of the cell-cycle regulated Mcm1p-Fkh2p transcription factor complex [J].
Boros, J ;
Lim, FL ;
Darieva, Z ;
Pic-Taylor, A ;
Harman, R ;
Morgan, BA ;
Sharrocks, AD .
NUCLEIC ACIDS RESEARCH, 2003, 31 (09) :2279-2288
[4]   Regulatory element detection using correlation with expression [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
NATURE GENETICS, 2001, 27 (02) :167-171
[5]  
CHEN T, 1999, P PAC S BIOC, V4, P29
[6]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[7]   Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80 [J].
Chu, S ;
Herskowitz, I .
MOLECULAR CELL, 1998, 1 (05) :685-696
[8]   Integrating regulatory motif discovery and genome-wide expression analysis [J].
Conlon, EM ;
Liu, XS ;
Lieb, JD ;
Liu, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3339-3344
[9]  
D'haeseleer P, 1999, Pac Symp Biocomput, P41
[10]   Genetic network inference: from co-expression clustering to reverse engineering [J].
D'haeseleer, P ;
Liang, SD ;
Somogyi, R .
BIOINFORMATICS, 2000, 16 (08) :707-726