On groups that are residually of finite rank

被引:3
作者
Dixon, MR [1 ]
Evans, MJ
Smith, H
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
关键词
Normal Subgroup; Finite Group; Nilpotent Group; Finite Index; Finite Rank;
D O I
10.1007/BF02764002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r be a fixed positive integer. A group G has (Prufer) rank r if every finitely generated subgroup of G can be generated by r elements and r is the least such integer. In this paper we consider groups that are residually of rank r. Among other things we prove that a periodic group that is residually (of rank r and locally finite) is locally finite and obtain the structure of groups that are residually (of rank r and locally soluble). A number of examples are also given to illustrate the limitations of these theorems.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 16 条
[1]  
AMBERG B, 1995, LOCALLY SOLUBLE PROD, P9
[2]  
CERNIKOV NS, 1990, UKR MATH J, V42, P855
[3]  
Dixon J., 1991, LONDON MATH SOC LECT, V157
[4]   Locally (soluble-by-finite) groups of finite rank [J].
Dixon, MR ;
Evans, MJ ;
Smith, H .
JOURNAL OF ALGEBRA, 1996, 182 (03) :756-769
[5]  
Grigorchuk RI, 1980, FUNCTIONAL ANAL APPL, V14, P53, DOI DOI 10.1007/BF01078416
[6]  
Gruenberg K. W., 1957, P LOND MATH SOC, V7, P29, DOI 10.1112/plms/s3-7.1.29
[7]  
KARGAPOLOV MI, 1959, DOKL AKAD NAUK SSSR+, V127, P1164
[8]  
KROPHOLLER PH, 1984, P LOND MATH SOC, V49, P155
[9]   SOME REMARKS ON SYLOW SUBGROUPS OF GENERAL LINEAR-GROUPS [J].
LEEDHAMGREEN, CR ;
PLESKEN, W .
MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (04) :529-535
[10]  
ROBINSON DJS, 1996, TEXTS MATH, V80