Major copy proportion analysis of tumor samples using SNP arrays

被引:31
作者
Li, Cheng [1 ,2 ]
Beroukhim, Rameen [3 ,4 ,5 ,6 ]
Weir, Barbara A. [3 ,4 ,5 ,6 ]
Winckler, Wendy [3 ,4 ,5 ,6 ]
Garraway, Levi A. [3 ,4 ,5 ,6 ]
Sellers, William R. [7 ]
Meyerson, Matthew [3 ,4 ,5 ,6 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Harvard Univ, Dept Biostat & Computat Biol, Sch Publ Hlth, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[4] Harvard Univ, Dept Med Oncol, Sch Med, Boston, MA 02115 USA
[5] Harvard Univ, Broad Inst, Cambridge, MA 02141 USA
[6] MIT, Cambridge, MA 02141 USA
[7] Novartis Inst Biomed Res, Cambridge, MA 02139 USA
关键词
D O I
10.1186/1471-2105-9-204
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Single nucleotide polymorphisms (SNPs) are the most common genetic variations in the human genome and are useful as genomic markers. Oligonucleotide SNP microarrays have been developed for high-throughput genotyping of up to 900,000 human SNPs and have been used widely in linkage and cancer genomics studies. We have previously used Hidden Markov Models (HMM) to analyze SNP array data for inferring copy numbers and loss-of-heterozygosity (LOH) from paired normal and tumor samples and unpaired tumor samples. Results: We proposed and implemented major copy proportion (MCP) analysis of oligonucleotide SNP array data. A HMM was constructed to infer unobserved MCP states from observed allele-specific signals through emission and transition distributions. We used 10 K, 100 K and 250 K SNP array datasets to compare MCP analysis with LOH and copy number analysis, and showed that MCP performs better than LOH analysis for allelic-imbalanced chromosome regions and normal contaminated samples. The major and minor copy alleles can also be inferred from allelic-imbalanced regions by MCP analysis. Conclusion: MCP extends tumor LOH analysis to allelic imbalance analysis and supplies complementary information to total copy numbers. MCP analysis of mixing normal and tumor samples suggests the utility of MCP analysis of normal-contaminated tumor samples. The described analysis and visualization methods are readily available in the user-friendly dChip software.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
[Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
[2]  
Beroukhim R, 2006, PLOS COMPUT BIOL, V2, P323, DOI 10.1371/journal.pcbi.0020041
[3]   High-resolution analysis of DNA copy number using oligonucleotide microarrays [J].
Bignell, GR ;
Huang, J ;
Greshock, J ;
Watt, S ;
Butler, A ;
West, S ;
Grigorova, M ;
Jones, KW ;
Wei, W ;
Stratton, MR ;
Futreal, PA ;
Weber, B ;
Shapero, MH ;
Wooster, R .
GENOME RESEARCH, 2004, 14 (02) :287-295
[4]   Dynamic model based algorithms for screening and genotyping over 100K SNPs on oligonucleotide microarrays [J].
Di, XJ ;
Matsuzaki, H ;
Webster, TA ;
Hubbell, E ;
Liu, GY ;
Dong, SL ;
Bartell, D ;
Huang, J ;
Chiles, R ;
Yang, G ;
Shen, MM ;
Kulp, D ;
Kennedy, GC ;
Mei, R ;
Jones, KW ;
Cawley, S .
BIOINFORMATICS, 2005, 21 (09) :1958-1963
[5]   ERBB-2 IS A POTENT ONCOGENE WHEN OVEREXPRESSED IN NIH/3T3 CELLS [J].
DIFIORE, PP ;
PIERCE, JH ;
KRAUS, MH ;
SEGATTO, O ;
KING, CR ;
AARONSON, SA .
SCIENCE, 1987, 237 (4811) :178-182
[6]  
DURBIN R, 1999, BIOL SEQUENCE ANAL P, P356
[7]   Hidden Markov models approach to the analysis of array CGH data [J].
Fridlyand, J ;
Snijders, AM ;
Pinkel, D ;
Albertson, DG ;
Jain, AN .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :132-153
[8]   Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H series analyzed with spectral karyotyping [J].
Grigorova, M ;
Lyman, RC ;
Caldas, C ;
Edwards, PAW .
CANCER GENETICS AND CYTOGENETICS, 2005, 162 (01) :1-9
[9]  
Huang J, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-83
[10]   Detection of large-scale variation in the human genome [J].
Iafrate, AJ ;
Feuk, L ;
Rivera, MN ;
Listewnik, ML ;
Donahoe, PK ;
Qi, Y ;
Scherer, SW ;
Lee, C .
NATURE GENETICS, 2004, 36 (09) :949-951